試験方法名称「5，150MHz を超え $5,250 \mathrm{MHz}$ 以下の周波数の電波を使用する小電カデータ通信システムの無線局のうち自動車内に設置する無線局に使用するための無線設備の特性試験方法」

略称「5．2GHz 帯自動車内無線 LAN システムの特性試験方法」

「証明規則第 2 条第 1 項第 78 号に掲げる無線設備（設備規則第四十九条の二十第二号においてその無線設備の条件が定められている小電カデータ通信システムの無線局（ $5,150 \mathrm{MHz}$ を超え $5,250 \mathrm{MHz}$ 以下の周波数の電波を使用するものに限る。）のうち自動車内に設置する無線局に使用するための無線設備）」

試験条件（共通）

1 試験場所の環境

室内の温湿度は，JIS Z8703による常温 $5 \sim 35^{\circ} \mathrm{C}$ の範囲，常湿 $45 \sim 85 \%$（相対湿度）の範囲内とす る。

2 電源電圧

（1）技術基準適合証明における特性試験の場合電源は，定格電圧を供給する。
（2）認証における特性試験の場合
電源は，定格電圧及び定格電圧 $\pm 10 \%$ を供給する。ただし次の場合を除く。
ア 外部電源から受験機器への入力電圧が $\pm 10 \%$ 変動したときにおける受験機器の無線部（電源は除く。）の回路への入力電圧の変動が $\pm 1 \%$ 以下であることが確認できた場合。この場合は定格電圧のみで試験を行う。

イ 電源電圧の変動幅が $\pm 10 \%$ 以内の特定の変動幅内でしか受験機器が動作しない設計となってお り，その旨及び当該特定の変動幅の上限値と下限値が工事設計書に記載されている場合。この場合は定格電圧及び当該特定の変動幅の上限値及び下限値で試験を行う。

3 試験周波数と試験項目

（1）受験機器の発射可能な周波数が 3 波以下の場合は，全波で全試験項目について試験を行う。
（2）受験機器の発射可能な周波数が 4 波以上の場合は，上中下の 3 波の周波数で全試験項目につ て試験を行う。
（3）周波数帯として，本文において以下の通り略称を用いる。

占有周波数帯幅（略称）	周波数帯	搬送波周波数
$\begin{aligned} & \text { 20MHz 以下 } \\ & \text { (20MHz システム) } \end{aligned}$	5． 2 GHz 帯	$\begin{aligned} & 5,180 \mathrm{MHz}, ~ 5,200 \mathrm{MHz}, ~ 5,220 \mathrm{MHz} \text { 又は } \\ & 5,240 \mathrm{MHz} \end{aligned}$
20 MHz を超え 40 MHz 以下 （40MHz システム）	5． 2 GHz 帯	$5,190 \mathrm{MHz}$ 又は $5,230 \mathrm{MHz}$
$\begin{gathered} 40 \mathrm{MHz} \text { を超え } \\ 80 \mathrm{MHz} \text { 以下 } \\ \text { (80MHz システム) } \end{gathered}$	5． 2 GHz 帯	$5,210 \mathrm{MHz}$

4 システム
複数のシステム（80MHz システム，40MHz システム，20MHz システム）を有する場合は，それぞ のシステムごとに行う。

5 拡散符号

受験機器が拡散符号の切替機能を有する場合は，符号系列，符号長，符号速度の組合わせが異な るごとに適当な 1 つの拡散符号について行う。

6 予熱時間

工事設計書に予熱時間が必要である旨が明記されている場合は，記載された予熱時間経過後，測定する。その他の場合は予熱時間をとらない。

7 測定器の精度と較正等

（1）測定値に対する測定精度は必要な試験項目において説明している。測定器は較正されたものを使用する必要がある。
（2）測定用スペクトルアナライザは掃引方式デジタルストレージ型とする。ただし，FFT 方式を用 いるものであっても，検波モード，分解能帯域幅（ガウスフィルタ（注）），ビデォ帯域幅等各試験項目の「スペクトルアナライザの設定」と同な設定ができるものは使用してもよい。
（3）FFT 方式を用いるスペクトルアナライザは，下記の条件を満たす必要がある。
ア 解析帯域幅を超える掃引周波数幅を必要とする測定項目については，分割して掃引が可能で あること。この場合，分割掃引は外部ヨンピュータ等を用いてもよい。（例 占有周波数帯幅の測定においては，許容値の 3 倍程度以上に設定できるものとする。）
イ バースト波を測定する場合は，解析対象のバースト周期以上の波形全体を安定的に取り込むこ とが可能であること。
ウ スプリアス発射又は不要発射の強度の測定項目に䄪いて， 60 dB 以上のダイナミックレンジが確保できること。
注：窓関数は，ガウス窓，カイザー窓（ $\alpha=11$ 程度）及びブラックマン・ハツス（4B）窓のいずれ かとする。ただし，他の形状の窓関数を用いる場合は，ガウス窓と同程度の形状を有し，窓関数の メインローブに対してサィドローブは 70 dB 以上減衰するものであり，かつ，シェープファクタ （ 60 dB 減衰帯域幅 3dB 減衰帯域幅との比）は 5 以下とする。また，用いる窓関数の等価雑音帯域幅により測定値の補正が可能であること。
（4）空中線電力の測定においてスペクトルアナライザの演算を用いた方法を記載しているが，演算機能は「チャネルパワー機能」や「バンドパワーマーカー機能」など，測定器に実装されている帯域内の送信電力を演算により求める方法である。
なお，測定器により演算機能の名称は異なる場合がある。

8 その他の条件

（1）各試験項目において複数の空中線（端子）を有する場合と記載している部分は，送信空中線と受信空中線が共通でない場合及び受信ダイバーシティ専用の空中線を有する場合において，「副次的 に発する電波等の限度」及び「キャリアセンス機能」の試験項目にあっては複数の受信空中線を有 する場合であって，それ以外の項目にあっては複数の送信空中線を有する場合である。
（2）複数の空中線を有する無線設備であって，キャリァセンス機能が無い送信のみの空中線を有し，送信空中線とキャリアセンスを行う空中線の距離等を意図的に離すことによって，送信空中線の位置とキャリアセンスを行う空中線の位置での電界強度等が異なる場合は，その差分を減じた値 をキャリアセンスレベルとする。
（3）複数の空中線を使用する空間多重方式（MIMO）及び空間分割多重方式（アダプティブアレーアン テナ）等を用いるものにあっては，技術基準の許容値が電力の絶対値で定められるものについて，各空中線端子で測定した値を加算して総和を求める。

一 一般事項

1 本試験方法の適用対象

（1）本試験方法はアンテナ端子（試験用端子を含む）のある設備に適用する。アンテナ一体型の設備の試験方法は，別に定める。
（2）本試験方法は内蔵又は付加装置により次の機能が実現できる機器に適用する。
ア 通信の相手方がない状態で電波を送信する機能
イ 連続送信（受信）状態，又は一定周期かつ同一バースト長の継続的バースト状態で送信（受信） する機能
ウ 試験しようとする周波数を設定して送信する機能
工 試験用の変調設定できる機能及び変調停止できる機能を有することが望ましい。
才 標準符号化試験信号（ITU－T 勧告 0.150 による 9 段 PN 符号又は 15 段 PN 符号）を用いて変調す る機能
（注 上記機能が実現できない機器の試験方法については別途検討する。）
2 その他
（1）受験機器の擬似負荷は，特性インピーダンスを 50Ω とする。
（2）各試験項目の結果は，測定値とともに技術基準の許容値を表示する。
（3）適合性判定に必要な空中線の絶対利得は，提出された書面で確認する。
（4）本試験方法は標準的な方法を定めたものであるが，これに代わる他の試験方法について技術的 に妥当であると証明された場合は，その方法で試験してもよい。

二 周波数の偏差

1 測定系統図

2 測定器の条件等

（1）周波数計としては，カウンタ又はスペクトルアナライザ（局発がシンセサイザ方式のもの）を使用する。
（2）周波数計の測定確度は，規定の許容偏差の $1 / 10$ 以下の確度とする。
（3）被測定波の振幅変動による影響を避けるため，減衰器の減衰量は周波数計へ十分な入カレベル を与える値とする。
（4）バースト波を測定する場合は，カウンタのパルス計測機能を使用して，ゲート開放時間をなる ベくバースト区間の全体が測れる値にする。

3 受験機器の状態

（1）試験周波数及び最大出力に設定して，無変調状態（連続又は継続的バースト）で送信する。
（2）無変調にできない場合は，変調状態で送信する。

4 測定操作手順

（1）無変調状態の場合は，周波数計で直接測定する。
（2）変調状態の場合は，波形解析器で測定する。
（3）2 つの搬送波周波数を同時に使用する無線設備の場合は，搬送波周波数ごとに送信を行い，各々の搬送波周波数について測定する。
（4）複数の空中線端子を有する場合は，それぞれの空中線端子において測定する。

5 結果の表示

（1）結果は，測定値を MHz 又は GHz 単位で表示するとともに，測定値の割当周波数に対する偏差 を百万分率（ 10^{-6} ）の単位で（＋）又は（－）の符号を付けて表示する。
（2）2 つの搬送波周波数を同時に使用する無線設備の場合は，割当周波数に対する搬送波周波数ご との測定値の偏差を表示する。
（3）複数の空中線端子を有する場合は，それぞれの空中線端子での測定値のうち，最も偏差の大き なものを表示するほか，参考としてそれぞれの空中線端子の測定値も表示する。
6 その他の条件
（1）変調波で試験する場合で，スペクトルアナライザによる周波数測定が行えるような特徴的なス ペクトラムがなく，特徴的なディップが観測される場合，信号発生器（シンセサイザ方式とする） を用いた方法で周波数を測定してもよい。すなわち，信号発生器の信号を被試験信号と同時に （又は切り替えて）スペクトルアナライザで観測し，信号発生器の周波数を画面上のディップの位置に合わせ，その時の信号発生器の周波数を測定値とする。
（2）複数の空中線端子を有する場合であっても，空中線選択方式のダイバーシティ等の切り替え回路のみで，周波数が変動する要因がない空中線の組合せであって同一の送信出力回路に接続さ れる場合は，選択接続される空中線端子の測定でよい。
（3）複数の空中線端子を有する場合であっても，共通の基準発振器に位相同期（例：PLL 等による位相同期）しているか，共通のクロック信号等を用いており，複数の空中線端子の周波数の偏差 が同じになることが証明される場合は，一の代表的な空中線端子の測定結果を測定値としても よい。

三 占有周波数帯幅

1 測定系統図

2 測定器の条件等

（1）スペクトルアナライザは以下のように設定する。

中心周波数
掃引周波数幅
分解能帯域幅
ビデオ帯域幅
Y 軸スケール
入カレベル

掃引時間

試験周波数
許容値の約 $2 \sim 3.5$ 倍（例 40 MHz ）
許容値の約 3% 以下（例 300 kHz ）
分解能帯域幅と同程度
10dB／Div
搬送波レベルがスペクトルアナライザ雑音レベルより
十分高いこと
測定精度が保証される最小時間

時間とする。）

データ点数	400 点以上（例 1001 点）
掃引モード	連続掃引（波形が変動しなくなるまで）
検波モード	サンプル ただし，バースト波の場合はポジティブピーク 表示モード
マックスホールド	

（2）スペクトルアナライザの測定値は，外部又は内部のコンピュータで処理する。

3 受験機器の状態

（1）試験周波数及び最大出力に設定し，占有周波数帯幅が最大となる状態に設定して送信する。
（2）2 つの搬送波周波数を同時に使用する無線設備の場合は，搬送波周波数ごとに送信を行う。

4 測定操作手順

（1）スペクトルアナライザの設定を2（1）とする。
（2）表示に変化が認められなくなるまで掃引を繰返した後，全データをコンピュータの配列変数に取り込む。
（3）全データについて， dB 値を電力次元の真数に変換する。
（4）全データの総和を求め，全電力として記憶する。
（5）最低周波数のデータから順次上に電力の加算を行い，この値が「全電力」の 0.5% になる限界 データ点を求める。その限界データ点の周波数を下限周波数として記憶する。
（6）最高周波数のデータから順次下に電力の加算を行い，この値が「全電力」の 0.5% になる限界 データ点を求める。その限界データ点の周波数を上限周波数として記憶する。
（7）占有周波数帯幅（＝上限周波数－下限周波数）を計算する。
（ 8）2 つの搬送波周波数を同時に使用する無線設備の場合は，搬送波周波数ごとに送信を行い，各々の搬送波周波数について占有周波数帯幅を測定する。
（9）複数の空中線端子を有する場合は，それぞれの空中線端子において測定する。

5 結果の表示

（1）占有周波数帯幅を MHz の単位で表示する。
（2） 2 つの搬送波周波数を同時に使用する無線設備の場合は，搬送波周波数ごとの測定値を表示す る。
（3）複数の空中線端子を有する場合は，それぞれの空中線端子での測定値のうち，最も大きなもの を表示するほか，参考としてそれぞれの空中線端子の測定値も表示する。

6 その他の条件

（1）複数の空中線端子を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波 を発射しない場合は，同時に電波を発射する空中線端子のみの測定でよい。ただし，空中線の選択回路に非線形素子を有する場合は省略しない。
（2）複数の空中線端子を有する場合であって，空中線端子ごとの測定値が許容値から 100 kHz を減 じた値（例：許容値が 20 MHz の場合，測定値が 19.9 MHz ）を超える場合は，それぞれの空中線端子を合成器（例：コンバイナー等）において接続して測定し，それぞれの空中線ごとの測定値に加えて表示する。以下に空中線端子が 4 の場合の接続を示す。この場合において，空中線電力の総和が最大となる状態に設定すること。

受験機器側

四 スプリアス発射又は不要発射の強度
1 測定系統図

注 1 コンピュータは，振幅の平均値を求める場合に使用する。

2 測定器の条件等

（1）不要発射探索時のスペクトルアナライザの設定は次のようにする。

掃引周波数幅
分解能帯域幅
ビデオ帯域幅
Y 軸スケール
入カレベル
掃引時間
データ点数
掃引モード
検波モード
（注2）
1 MHz
分解能帯域幅と同程度
10dB／Div
最大のダイナミックレンジとなる値
測定精度が保証される最小時間（注3）
400 点以上（例 1001 点）
単掃引
ポジティブピーク

注2：不要発射の探索は，30MHz から 26 GHz までとする。ただし，以下の周波数を除く。

	測定除外周波数
	5.2 GHz 帯
20 MHz システム	$5,142 \mathrm{MHz} \sim 5,266.7 \mathrm{MHz}$
40 MHz システム	$5,141.6 \mathrm{MHz} \sim 5,278.4 \mathrm{MHz}$
80 MHz システム	$5,123.2 \mathrm{MHz} \sim 5,296,7 \mathrm{MHz}$

注3：バースト波の場合，掃引時間は1デ—夕点あたり1バースト周期以上となる時間とする。掃引時間短縮のため「（掃引周波数幅／分解能帯域幅）×バースト周期」で求まる時間以上であれば掃引時間として設定してもよい。ただし，検出された信号レベルが最大 3 dB 小さく観測される可能性があるので注意を要する。
（2）不要発射振幅測定時のスペクトルアナライザの設定は次のようにする。

中心周波数
掃引周波数幅
分解能帯域幅
ビデオ帯域幅 Y 軸スケール入カレベル掃引時間

データ点数
掃引モード検波モード

不要発射周波数（探索された周波数）
OHz
1 MHz
分解能帯域幅と同程度
10dB／Div
最大のダイナミックレンジとなる値
測定精度が保証される最小時間
ただし，バースト波の場合，1 バーストの継続時間以上
400 点以上（例 1001 点）
単掃引
サンプル

3 受験機器の状態

（1）試験周波数及び最大出力に設定し，連続送信状態又は継続的（一定周期，一定バースト長）バ ースト送信状態とする。
（2）受験機器をスプリアス発射又は不要発射の強度が最大となる状態に設定して送信する。
（3）拡散符号を用いるものは，試験拡散符号に設定し，標準符号化試験信号で変調する。
（4）2 つの搬送波周波数を同時に使用する無線設備の場合は，同時に 2 つの搬送波周波数の送信を行う。
（5）複数の空中線端子を有する場合であって，空中線電力を制御する機能を有する場合は，それぞ れの空中線端子ごとに電力制御を最大出力となるように設定する。

4 測定操作手順

（1）スペクトルアナライザの設定を2（1）として掃引し，不要発射を探索する。
探索した不要発射の振幅値を等価等方輻射電力に換算した値が許容値を満足する場合は，2（2） の測定は行わず，求めた換算値を測定値とする。次の式で等価等方輻射電力 $\mathrm{P}_{0 \mathrm{~A}}$（EIRP）を算出する。
$P_{0 A}=P_{A}+G_{T}-L_{F}(d B m / M H z)$
記号 P_{A} ：スペクトルアナライザによる不要発射測定値（ dBm ）
G_{T} ：受験機器の空中線の絶対利得（dBi）
L_{F} ：給電線損失（ dB ）
なおここでそれぞれの値は不要発射周波数におけるものである。
（2）探索した不要発射振幅値を等価等方幅射電力に換算した値が，許容值を超えた場合，スペクト ルアナライザの周波数の精度を高めるため，掃引周波数幅を $100 \mathrm{MHz}, ~ 10 \mathrm{MHz}$ と順次狭くして，そ の不要発射の周波数を正確に求める。スペクトルアナライザの設定を2（2）とし，不要発射の振幅の平均値（それらがバースト波の場合は，それぞれのバースト内の平均値とする。）を求め て等価等方輻射電力に換算し測定値とする。
（3）複数の空中線端子を有する場合は，それぞれの空中線端子において測定するほか，空中線端子 を結合器で結合させて測定する。なお，ここで用いる空中線の絶対利得はそれぞれの空中線の値 を用いる。

5 結果の表示

（1）上で求めた不要発射電力を許容値の周波数区分ごとに最大の 1 波を $\mu \mathrm{W} / \mathrm{MHz}$ 単位で周波数と ともに表示する。また，等価等方輻射電力換算に使用した空中線の絶対利得も合わせて記載す る。
（2）複数の空中線端子を有する場合は，それぞれの空中線端子の測定値において周波数ごとにおけ る総和を $\mu \mathrm{W} / \mathrm{MHz}$ 単位で周波数とともに表示するほか，参考としてそれぞれの空中線端子ごとに最大の 1 波を $\mu \mathrm{W} / \mathrm{MHz}$ 単位で周波数とともに表示する。
（3）複数の空中線端子を有する場合であって，空中線端子を結合して測定した値は，（1）と同様 に表示する。

6 その他の条件
（1）2（2）において，スペクトルアナライザの検波モードは「サンプル」の代わりに「RMS」を用いてもよい。
（2）5（2）において，周波数ごとにおける総和を表示することとしているが，それぞれの空中線端子の測定値が，許容値を空中線本数（注 4）で除した値を超える周波数において 1 MHz 帯域内 の値の総和を求める。なお，全ての空中線端子において許容値を空中線本数で除した値を下回る場合は，それぞれの測定帯域において最大の測定値となる空中線端子の測定値に空中線木数を乗じた値を表示してもよい。

注 4：空中線本数は，同時に電波を発射する空中線の本数（ストリーム数等）であつて，空中線選択方式のダイバーシティ等で切り替える空中線の本数を含まない。
（3）複数の空中線端子を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波 を発射しない場合は，同時に電波を発射する空中線端子のみの測定でよい。ただし，空中線の選択回路に非線形素子を有する場合又は，空中線端子によって測定値が異なることが懸念される場合は，全ての空中線端子の測定を行う。
（4）スペクトルアナライザの分解能帯域幅を 1 MHz に設定して，搬送波振幅に対する不要発射振幅 の電力比を測定し，その電力比に別途測定した空中線電力の測定値を乗じて不要発射の強度の値を求め，等価等方輻射電力に換算した値を測定値とする方法もある。
（5）複数の空中線端子を有する場合は，それぞれの空中線端子を合成器（例：コンバイナー等）に おいて接続して測定する。以下に空中線端子が 4 の場合の接続を示す。なお，各空中線の間の結合量減衰量（注 5）は 12 dB を標準とするが，運用状態の空中線配置における結合減衰量が書面 により提出された場合は提出された値を用いる。

受験機器側

注5：空中線間の結合減衰量
上図における一例として空中線端子 1 と空中線端子 2 の結合量は，空中線端子 3，空中線端子 4及び測定器側の端子を終端した状態で空中線端子 1 に入力した信号レベル（例：0dBm）と空中線端子 2 で測定した値（例：-12 dBm ）の差（ $12 \mathrm{dB)}$ ）とする。なお，提出された結合減衰量の設定が不可能な場合は，以下のように結合器を介して，他の空中線端子の出カレベル（総和）から結合減衰量 を減じた値となる変調信号を標準信号発生器から入力して測定する。

五 スプリアス発射又は不要発射の強度（帯域外漏えい電力）

1 測定系統図

2 測定器の条件等
（1）帯域外漏えい電力探索時のスペクトルアナライザの設定は次のようにする。

掃引周波数幅
分解能帯域幅
ビデオ帯域幅
Y 軸スケール
入カレベル
掃引時間
（注 1）に示す周波数幅
1 MHz
分解能帯域幅と同程度
$10 \mathrm{~dB} /$ Div
最大のダイナミックレンジとなる値
測定精度が保証される最小時間

$$
\text { (バースト波の場合, } 1 \text { データ点あたり } 1 \text { バースト周期以上となる }
$$時間とする。）

データ点数 400 点以上（例 1001 点）
掃引モード 単掃引
検波モード ポジティブピーク
注1：掃引周波数範囲は，無線設備ごとに以下の通りとする。
（ア） 20 MHz システム
$5,142 \mathrm{MHz} \sim 5,150 \mathrm{MHz}$ ，
$5,250 \mathrm{MHz} \sim 5,250.2 \mathrm{MHz}$ ，
$5,250.2 \mathrm{MHz} \sim 5,251 \mathrm{MHz}$ ，
$5,251 \mathrm{MHz} \sim 5,260 \mathrm{MHz}$
$5,260 \mathrm{MHz} \sim 5,266.7 \mathrm{MHz}$
（イ） 40 MHz システム
$5,141.6 \mathrm{MHz} \sim 5,150 \mathrm{MHz}$ ，
$5,250 \mathrm{MHz} \sim 5,251 \mathrm{MHz}$ ，
$5,251 \mathrm{MHz} \sim 5,270 \mathrm{MHz}$ ，
$5,270 \mathrm{MHz} \sim 5,278.4 \mathrm{MHz}$
（ウ）80MHz システム
$5,123.2 \mathrm{MHz} \sim 5,150 \mathrm{MHz}$ ，
$5,250 \mathrm{MHz} \sim 5,251 \mathrm{MHz}$ ，
$5,251 \mathrm{MHz} \sim 5,290 \mathrm{MHz}$ ，
$5,290 \mathrm{MHz} \sim 5,296.7 \mathrm{MHz}$
（2）帯域外漏えい電力測定時のスペクトルアナライザの設定は次のようにする。

中心周波数掃引周波数幅
分解能帯域幅 ビデオ帯域幅 Y 軸スケール
掃引時間

データ点数 400 点以上（例 1001 点）
掃引モード
検波モード
0 Hz
1 MHz
分解能帯域幅と同程度
10dB／Div
測定精度が保証される最小時間

連続掃引
サンプル

帯域外漏えい電力の周波数（探索された周波数）

ただし，バースト波の場合，1 バーストの継続時間以上

3 受験機器の状態

（1）試験周波数及び最大出力に設定し，連続送信状態又は継続的（一定周期，一定バースト長）バ ースト送信状態とする。
（2）受験機器をスプリアス発射又は不要発射の強度（帯域外漏えい電力）が最大となる状態に設定 して送信する。
（3）複数の空中線端子を有する場合であって，空中線電力を制御する機能を有する場合は，それぞ れの空中線端子ごとに電力制御を最大出力となるように設定する。

4 測定操作手順

（1）スペクトルアナライザを2（1）のように設定する。
（2）2（1）の各掃引周波数幅について掃引し，それぞれの帯域での電力の最大値を求める。探索 した值を等価等方輻射電力に換算した値が許容値を満足する場合は，2（2）の測定は行わず，求めた换算値を測定値とする。

次の式で等価等方輻射電力 $P_{0 A}$（EIRP）を算出する。
$P_{0 A}=P_{A}+G_{T}-L_{F} \quad(d B m / M H z)$
記号 P_{A} ：スペクトルアナライザによる帯域外漏えい電力測定値（ $\mathrm{dBm} / \mathrm{MHz}$ ）
G_{T} ：受験機器の空中線の絶対利得（dBi）
L_{F} ：給電線損失（ dB ）
なおここでそれぞれの値は帯域外漏えい電力の周波数におけるものである。
（3）探索した値を等価等方輻射電力に換算した値が許容値を超えた場合，最大値が得られた周波数 でスペクトルアナライザを2（2）のように設定し振幅値の平均値（バースト波の場合バースト内平均電力）を求め等価等方輻射電力に換算し測定値とする。
（4）複数の空中線端子を有する場合は，それぞれの空中線端子において測定するほか，空中線端子 を結合器で結合させて測定する。なお，ここで用いる空中線の絶対利得はそれぞれの空中線の値 を用いる。

5 結果の表示

（1）帯域外漏えい電力については，規定の各帯域における最大電力値を等価等方輻射電力に換算し て $\mu \mathrm{W} / \mathrm{MHz}$ 単位で周波数とともに表示する。
（2）複数の空中線端子を有する場合は，それぞれの空中線端子ごとの測定値を真数で加算して総和 を表示するほか，参考としてそれぞれの空中線端子ごとの測定値も表示する。
（3）複数の空中線端子を有する場合であって，空中線端子を結合して測定した値は，（1）と同様 に表示する。

6 その他の条件

（1）4の搬送波周波数は，割当周波数とする。
（2）帯域外漏えい電力を搬送波の近傍で測定する場合，スペクトルアナライザの分解能帯域幅の設定が 1 MHz と広いために搬送波の電力が帯域外漏えい電力の測定値に影響を与える可能性がある。 この場合，スペクトルアナライザの分解能帯域幅を，搬送波電力が帯域外漏えい電力の測定値に影響を与えなくなる程度まで狭め， 1 MHz ごとの電力総和を計算する等（注 2）の測定上の操作 が必要である。
注 2 ：電力総和の計算は以下の式による。ただし，直接 RMS 値が求められるスペクトルアナライザ の場合は，その値を用いてもよい。

$$
P_{s}=\left(\sum_{i=1}^{n} E_{i}\right) \times \frac{S w}{R B W \times k \times n}
$$

Ps：各周波数での 1 MHz ごとの電力総和の測定値（W）
Ei：1データ点の測定値（W）
Sw：掃引周波数幅（ 1 MHz ）
n ：掃引周波数幅（ 1 MHz ）内のデータ点数
k ：等価雑音帯域幅の補正値

RBW：分解能帯域幅（MHz）（ただし，RBW $\times \mathrm{n} \geqq \mathrm{sw}$ ）
（3）帯域外漏えい電力の技術基準が周波数に応じて変化する帯域では，周波数ごとの測定値（等価等方輻射電力に換算した値）が技術基準を満たす必要がある。
（4）2（2）において，スペクトルアナライザの検波モードは「サンプル」の代わりに「RMS」を用いてもよい。
（5）5（3）において，周波数ごとにおける総和を表示することとしているが，それぞれの空中線端子の測定値が，許容値を空中線本数（注3）で除した値を超える周波数において 1 MHz 帯域内 の値の総和を求める。なお，全ての空中線端子において許容値を空中線本数で除した値を下回る場合は，それぞれの測定帯域において最大の測定値となる空中線端子の測定値に空中線本数を乗じた値を表示してもよい。

注 3：空中線本数は，同時に電波を発射する空中線の本数（ストリーム数等）であつて，空中線選択方式のダイバーシティ等で切り替える空中線の本数を含まない。
（6）複数の空中線端子を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波 を発射しない場合は，同時に電波を発射する空中線端子のみの測定でよい。ただし，空中線の選択回路に非線形素子を有する場合又は，空中線端子によって測定値が異なることが懸念される場合は，全ての空中線端子の測定を行う。
（7）複数の空中線端子を有する場合は，それぞれの空中線端子を合成器（例：コンバイナー等）に お

いて接続して測定する。以下に空中線端子が 4 の場合の接続を示す。なお，各空中線の間の結合量減衰量（注 4）は12dB を標準とするが，運用状態の空中線配置における結合減衰量が書面に より提出された場合は提出された値を用いる。

受験機器側

注4：空中線間の結合減衰量
上図における一例として空中線端子 1 と空中線端子 2 の結合量は，空中線端子 3，空中線端子 4 及 び測定器側の端子を終端した状態で空中線端子 1 に入力した信号レベル（例：0dBm）と空中線端子 2 で測定した値（例：-12 dBm ）の差（ $12 \mathrm{dB)}$ ）とする。なお，提出された結合減衰量の設定が不可能 な場合は，以下のように結合器を介して，他の空中線端子の出力レベル（総和）から結合減衰量を減じた値となる変調信号を標準信号発生器から入力して測定する。

六 空中線電力の偏差

1 測定系統図

IF 出力

2 測定器の条件等
（1）スペクトルアナライザの，分解能帯域幅 1 MHz における等価雑音帯域幅を測定し，分解能帯域幅を 1 MHz 等価帯域幅に補正する補正値を求める。
ただし，拡散帯域幅が 1 MHz 以下の場合は，測定した等価雑音帯域幅を用いて補正を行う必要は ない。
（2）減衰器の減衰量は，スペクトルアナライザに最適動作入カレベルを与えるものとする。
（3）空中線電力の最大値を与える周波数探索時のスペクトルアナライザの設定は，次のとおりとす る。

中心周波数
掃引周波数幅
分解能帯域幅
ビデオ帯域幅
Y 軸スケール
掃引時間

試験周波数
占有周波数帯幅の 2 倍程度（例 40 MHz ）
1 MHz
分解能帯域幅の 3 倍程度（例 3 MHz ）
$10 \mathrm{~dB} / \mathrm{Div}$
測定精度が保証される最小時間
（バースト波の場合，1 データ点あたり 1 バースト周期以上となる時
間とする。）
トリガ条件 フリーラン
データ点数 1001点以上
掃引モード
連続掃引
ポジティブピーク
マックスホールド
（4）空中線電力を測定する場合のスペクトルアナライザの設定は，次のとおりとする。この場合，電力計をスペクトルアナライザの IF 出力に接続した状態で，電力計の指示を受験機器の出力点

に対して較正しておく。
中心周波数
掃引周波数幅
分解能帯域幅 OHz

掃引モード 1 MHz連続掃引
（5）スペクトルアナライザの演算機能を使用して空中線電力を測定する場合のスペクトルアナラ イザの設定は，次のとおりとする。

中心周波数
掃引周波数幅
演算帯域幅
分解能帯域幅 ビデオ帯域幅

Y 軸スケール
掃引時間
トリガ条件
データ点数
掃引モード
検波モード
表示モード

探索された周波数
10 MHz 程度
1 MHz
30 kHz 以上 300 kHz 以下
分解能帯域幅の 3 倍程度
10dB／Div
1 データ点あたりバースト周期の整数倍
フリーラン
1001 点
連続掃引
RMS
RMS 電力平均 10 回程度

3 受験機器の状態

（1）試験周波数に設定し，連続送信状態又は継続的（一定周期，一定バースト長）バースト送信状態とする。
（2）受験機器を空中線電力が最大となる状態に設定して送信する。
（3）拡散符号を用いるものは，試験拡散符号に設定し，標準符号化試験信号で変調する。
（4）直交周波数分割多重方式の場合は，バースト送信状態とし，副艇送波の数が最も少ない状態 （ショートプリアンブル）の時間の割合が最大となるような変調をかける。ただし，これは，実運用状態で連続的に生じうる範囲で行うこととする。
もし，このような変調がかけられない場合は，一定周期，一定バースト長のバースト送信状態，又は連続送信状態で行ってもよい。
（5）2 つの搬送波周波数を同時に使用する無線設備の場合は，同時に 2 つの搬波周波数の送信を行う。
（6）複数の空中線端子を有する場合であって，空中線電力を制御する機能を有する場合は，それぞ れの空中線端子ごとに電力制御を最大出力となるように設定する。

4 測定操作手順

I 電力計を用いた空中線電力の測定

ア スペクトルアナライザを2（3）のように設定する。
イ 表示に変化が認められなくなるまで掃引を繰返した後， 1 MHz 当たりの電力が最大値を与える周波数を測定する。

ウ 2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数について，1MHz当たりの電力が最大値を与える周波数を測定する。
エ スペクトルアナライザを2（4）のように設定する。

オ 電力計をスペクトルアナライザの IF 出力に接続する。
力 空中線電力は，次のとおりとする。
（ア）連続波の場合
（イ）バースト波の場合

電力計の指示を2（1）により補正した値
連続波の場合と同様に補正した値と送信時間率から，バー スト内の平均電力を計算した値
バースト内平均電力 $=\frac{\text { 電力計の指示を2（1）により補正した値 }}{\text { 送信時間率 }}$ ただし 送信時間率 $=\frac{\text { バースト送信時間 }}{\text { バースト繰り返し周期 }}$

キ 直交周波数分割多重方式の場合で，副搬送波の変調方式が複数ある場合は，それぞれの場合の空中線電力を測定し，最も大きい値を測定値とする。
ク 2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数について，空中線電力を測定する。

ケ 複数の空中線端子を有する場合は，それぞれの空中線端子において測定する。

II スペクトルアナライザの演算機能を使用した空中線電力の測定

ア スペクトルアナライザを2（3）のように設定する。
イ 表示に変化が認められなくなるまで掃引を繰返した後， 1 MHz 当たりの電力が最大値を与える周波数を測定する。
ウ 2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数について，1MHz当たりの電力が最大値を与える周波数を測定する。
エ スペクトルアナライザを2（5）のように設定する。
オ 空中線電力は次の通りとする。
（ア）連続波の場合
（イ）バースト波の場合

スペクトルアナライザの演算から求めた値

連続波の場合と同様に演算から求めた値と送信時間率から， ジースト内の平均電力を計算した値

バースト内平均電力 $=\frac{\text { スペクトルアナライザの演算から求めた値 }}{\text { 送信時間率 }}$

$$
\text { ただし 送信時間率 }=\frac{\text { バースト送信時間 }}{\text { バースト繰り返し周期 }}
$$

力 直交周波数分割多重方式の場合で，副搬送波の変調方式が複数ある場合は，それぞれの場合の空中線電力を測定し，最も大きい値を測定値とする。

キ 2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数について，空中線電力を測定する。
ク 複数の空中線端子を有する場合は，それぞれの空中線端子において測定する。

5 結果の表示

（1）結果は，空中線電力の絶対値を $\mathrm{mW} / \mathrm{MHz}$ 単位で表示するとともに，定格（工事設計書に記載さ れる）空中線電力に対する偏差を\％単位で（＋）又は（－）の符号を付けて表示する。また，等価等方輻射電力を空中線の絶対利得を用いて計算し，mW／MHz 単位で表示する。なお，空中線の絶対利得は工事設計書記載の値を用いる。（注）
（2）複数の空中線端子を有する場合は，それぞれの空中線端子での測定値を真数で加算して表示す

るほか，参考としてそれぞれの空中線端子の測定値も表示する。
注：2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬波周波数の空中線電力測定値を表示する。

6 その他の条件

（1）複数の空中線端子を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波 を発射しない場合は，同時に電波を発射する空中線端子のみの測定でよい。ただし，空中線端子 によって測定値が異なることが懸念される場合は省略してはならない。
（2）被測定信号に情報伝送しない区間があり，この区間のレベルが情報伝送する区間のレベルより低い場合はバースト波と見なし，情報伝送しない区間は測定の対象としない。
（3）2（5）の測定において，分解能帯域幅フィルタはガゥスフィルタとし，3dB 減衰帯域幅で規定されていること。なお，変調信号が安定している場合には，30kHz 以下とすることができる。
（4）4 I（1）において，スペクトルアナライザの検波モードを「RMS」として測定する場合におい ては電力計に代えてもよい。
（5）（3）において，スペクトルアナライザの検波モードを「RMS」とする場合は，ビデオ帯域幅を分解能帯域幅と同程度に設定するか，又は，ビデオ帯域幅の設定を OFFとして，空中線電力の最大値を与える周波数探索を行ってもよい。
（6）スペクトルアナライザの検波モードが，電力の真値（RMS）を表示するものであれば，スペク ト

ルアナライザ表示値（バースト波の場合はバースト内平均電力に換算すること。）を測定値とし てもよい。ただし，分解能帯域幅 1 MHz における等価雑音帯域幅の補正が可能であること。なお，測定値に疑義がある場合は2（4）の方法を用いて確認を行うこと。
（7）4 I（1）において，電力計を用いて空中線電力（総電力）を測定し，その値を使用してスペ クトルアナライザのトレースを正規化して 1 MHz 当たりの電力を算出してもよい。
（8）II の測定において，掃引時間は，バースト周期×データ点数の整数倍に設定する。これができ ない場合には，バースト周期 $\times 10 \times$ データ点数以上の時間とする。
（9）II の測定において，演算帯域幅は，矩形とすること。チャネルパワー機能を有するスペクトル アナライザにおいて，初期設定がルートナイキストフィルタ等に設定されている機種があるた め注意を要する。
（10）II の測定において，演算は分解能帯域幅を等価雑音帯域幅で補正を行っているものであるこ と。
（11）IIの測定において，スペクトルアナライザの演算機能を用いて電力密度を求める場合は，測定する分解能帯域幅，ビデオ帯域幅などの設定条件を同じ条件として，標準信号発生器を仲介し て電力計の測定値との差を補正すること。
（12）II の測定では，測定器の演算精度により測定結果にばらつきが生じる可能性があるため，測定に用いる場合には十分な検証をおこなうこと。測定結果に疑義が生じた場合には，I の測定方法を用いること。

七 隣接チャネル漏えい電力

1 測定系統図

変調信号 発生器	受瞺機器	擬似負荷 （減衰器）	$\begin{aligned} & \text { スペクトル } \\ & \text { アナライザ } \end{aligned}$

2 測定器の条件等

隣接チャネル漏えい電力測定時のスペクトルアナライザの設定は次のようにする。

中心周波数測定操作手順に示す周波数
掃引周波数幅
（注 1）に示す周波数幅
分解能帯域幅 300 kHz

ビデオ帯域幅
Y 軸スケール
入カレベル 最大のダイナミックレンジとなる値（例 ミキサ入力における搬送波のレベル が $-10 \sim-15 \mathrm{dBm}$ 程度）

データ点数 400 点以上（例 1001 点）
掃引モード 連続掃引（波形が変動しなくなるまで）
検波モード

表示モード
300 kHz
$10 \mathrm{~dB} /$ Div 400 点以上（例 1001 点）

サンプル
ただし，バースト波の場合はポジティブピーク

注 1
占有周波数帯幅 18 MHz 超え 20 MHz 以下： 20 MHz
占有周波数帯幅 20 MHz 超え 40 MHz 以下： 40 MHz
占有周波数帯幅 40 MHz 超え 80 MHz 以下： 80 MHz

3 受験機器の状態

（1）試験周波数及び最大出力に設定し，連続送信状態又は継続的（一定周期，一定バースト長）バ ースト送信状態とする。
（2）受験機器を隣接チャネル漏えい電力が最大となる状態に設定して送信する。
（3）複数の空中線端子を有する場合であって，空中線電力を制御する機能を有する場合は，それぞ れの空中線端子ごとに電力制御を最大出力となるように設定する。

4 測定操作手順

（1）スペクトルアナライザを2のように設定する。
（2）搬送波電力（Pc）の測定
ア 搬送波周波数を中心周波数にして掃引する。
イ 全データ点の値をコンピュータの配列変数に取り込む。
ウ 全データについて，dB 値を電力次元の真数に変換する。
工 全データの電力総和を求め，これをPcとする。
（3）上側隣接チャネル漏えい電力（ Pu ）の測定
ア 搬送波周波数＋20MHz 又は＋40MHz（注 2）を中心周波数にして掃引する。
イ 全データ点の値をコンピュータの配列変数に取り込む。

ウ 企データについて， dB 値を電力次元の真数に変換する。
工 全データの電力総和を求め，これを Puとする。
オ 搬送波周波数 +40 MHz 又は +80 MHz （注 2）を中心周波数にして掃引し，終了後，イから工の手順 を繰り返す。
（4）下側隣接チャネル漏えい電力（ P_{L} ）の測定
ア 搬送波周波数 -20 MHz 又は -40 MHz （注 2）を中心周波数にして掃引する。
イ 全データ点の値をコンピュータの配列変数に取り込む。
ウ 全データについて， dB 値を電力次元の真数に変換する。
工 全データの電力総和を求め，これを P_{L} とする。
オ 搬送波周波数 -40 MHz 又は -80 MHz （注 2）を中心周波数にして掃引し，終了後，イから工の手順 を繰り返す。
注 2
占有周波数帯幅 18 MHz 超え 20 MHz 以下：$\pm 20 \mathrm{MHz}$ ，$\pm 40 \mathrm{MHz}$
占有周波数帯幅 20 MHz 超え 40 MHz 以下：$\pm 40 \mathrm{MHz}$ ，$\pm 80 \mathrm{MHz}$
占有周波数帯幅 40 MHz 超え 80 MHz 以下：$\pm 80 \mathrm{MHz}$
（5）複数の空中線端子を有する場合は，それぞれの空中線端子ごとに測定するほか，空中線端子を結合器で結合させて測定する。
（6）隣接チャネル漏えい電力は，下記式により計算する。
ア 上側隣接チャネル漏えい電力比 101 og （ $\mathrm{Pu} / \mathrm{Pc}$ ）
イ 下側隣接チャネル漏えい電力比 $1010 g\left(\mathrm{P}_{\mathrm{L}} / \mathrm{Pc}\right)$
（7）複数の空中線端子を有する場合は，各端子の総和に対して上側隣接チャネル漏えい電力比及び下側隣接チャネル漏えい電力比を求める。

5 結果の表示

上側隣接チャネル漏えい電力及び下側隣接チャネル漏えい電力の測定値を，技術基準で規定す単位で表示する。

なお，4（7）で求めたときは，参考としてそれぞれの空中線端子ごとの測定値も表示する。
6 その他の条件
（1）2 のスペクトルアナライザの設定において，掃引周波数幅を 100 MHz 又は 200 MHz にし，一つ の画面で，上側，下側ともに $\pm 20 \mathrm{MHz}, ~ \pm 40 \mathrm{MHz}$ 又は $\pm 40 \mathrm{MHz}, ~ \pm 80 \mathrm{MHz}$ の隣接チャネル漏えい電力 を測定するような方法を用いてもよい。
（2）4の搬送波周波数は，割当周波数とする。
（3）複数の空中線端子を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波 を発射しない場合は，同時に電波を発射する空中線端子のみの測定でよい。ただし，空中線の選択回路に非線形素子を有する場合又は，空中線端子によって測定値が異なることが懸念される場合 は，全ての空中線端子の測定を行う。
（4）複数の空中線端子を有する場合は，それぞれの空中線端子を合成器（例：コンバイナー等）に おいて接続して測定する。以下に空中線端子が 4 の場合の接続を示す。なお，各空中線の間の結合量減衰量（注 3）は 12 dB を標準とするが，運用状態の空中線配置における結合減衰量が書面によ り提出された場合は提出された値を用いる。

受験機器側

注 3 ：空中線間の結合減衰量
上図における一例として空中線端子1と空中線端子 2 の結合量は，空中線端子 3，空中線端子 4及び測定器側の端子を終端した状態で空中線端子1に入力した信号レベル（例：0dBm）と空中線端子 2 で測定した値（例：-12 dBm ）の差（ 12 dB ）とする。なお，提出された結合減衰量の設定が不可能な場合は，以下のように結合器を介して，他の空中線端子の出カレベル（総和）から結合減衰量を減じた値となる変調信号を標準信号発生器から入力して測定する。

八 副次的に発する電波等の限度

1 測定系統図

注1 コンピュータは，振幅の平均値を求める場合に使用する。
2 測定器の条件等
（1）測定対象が低レベルのため擬似負荷（減衰器）の減衰量はなるべく低い値とする。
（2）副次発射探索時のスペクトルアナライザは以下のように設定する。

掃引周波数幅
分解能帯域幅

ビデオ帯域幅
（注2）
周波数が 1 GHz 未満のとき， 100 kHz
1GHz 以上のとき, 1MHz

分解能帯域幅と同程度

掃引時間
Y 軸スケール
データ点数
掃引モード
検波モード

測定精度が保証される最小時間
$10 \mathrm{~dB} / \mathrm{Div}$
400 点以上（例 1001 点）
単掃引
ポジティブピーク

注 2 ：副次発射の探索は， 30 MHz から 26 GHz までとする。
（3）副次発射測定時のスペクトルアナライザは以下のように設定する。
中心周波数
掃引周波数幅
分解能帯域幅

ビデオ帯域幅 分解能帯域幅と同程度
掃引時間
測定する副次発射周波数（探索された周波数）
0 Hz
周波数が 1 GHz 未満のとき， 100 kHz
1 GHz 以上のとき， 1 MHz

Y 軸スケール
測定精度が保証される最小時間

データ点数
$10 \mathrm{~dB} / \mathrm{Div}$

掃引モード
400 点以上（例 1001 点）

検波モード
単掃引
サンプル

3 受験機器の状態

試験周波数を全時間にわたり連続受信できる状態に設定する。

4 測定操作手順

（1）スペクトルアナライザの設定を2（2）とし，副次発射の振幅の最大値を探索する。
（2）探索した結果が許容値の $1 / 10$ 以下の場合，探索値を測定値とする。
（3）探索した結果が許容値の $1 / 10$ を超えた場合スペクトルアナライザの中心周波数の設定精度を高めるため，周波数掃引幅を $100 \mathrm{MHz}, ~ 10 \mathrm{MHz}$ 及び 1 MHz のように分解能帯域幅の 10 倍程度まで順次狭くして，副次発射の周波数を求める。次に，スペクトルアナライザの設定を上記 2 （ 3 ） とし，平均化処理を行って平均電力を測定する。
（4）複数の空中線端子を有する場合は，それぞれの空中線端子において測定する。

5 結果の表示

（1）許容値の $1 / 10$ 以下の場合は最大の 1 波を周波数とともに nW 又は pW 単位で表示する。
（2）許容値の $1 / 10$ を超える場合はすべての測定値を周波数とともに nW 単位で表示し，かつ電力 の合計値を nW 単位で表示する。
（3）複数の空中線端子を有する場合は，それぞれの空中線端子の測定値の総和を求め表示する。許容値を空中線本数（注3）で除した値の $1 / 10$ 以下の場合は最大の 1 波を周波数とともに nW 又は pW 単位で表示するほか，参考としてそれぞれの空中線端子ごとに最大の 1 波を周波数とともに nW 又は pW 単位で表示する。
（4）測定値の総和が許容値を空中線本数（注3）で除した値の $1 / 10$ を超える場合はすべての測定値を周波数とともに nW 単位で表示し，かつ電力の合計値を nW 単位で表示するほか，参考とし てそれぞれの空中線端子ごとに最大の 1 波を周波数とともに nW 単位で表示する。
注3：空中線本数は，同時に電波を受信する空中線の本数（ストリーム数等）であつて，空中線選択方式のダイバーシティ等で切り替える空中線の本数を含まない。

6 その他の条件

（1）擬似負荷は，特性インピーダンス 50Ω の減衰器を接続して行うこととする。
（2）スペクトルアナライザの感度が足りない場合は，低雑音増幅器等を使用する。
（3）受験機器の設定を連続受信状態にできないものについては，受験機器の間欠受信周期を最短に設定して，測定精度が保証されるようにスペクトルアナライザの掃引時間を，少なくとも 1 デ ータ点当たり1周期以上とする必要がある。
（4）2（3）において，スペクトルアナライザの検波モードは「サンプル」の代わりに「RMS」を用いてもよい。
（5）複数の空中線端子を有する場合であっても，空中線選択方式のダイバーシティ等で同時に受信回路に接続されない場合は，同時に受信回路に接続される空中線端子のみの測定でよい。ただ し，空中線端子によって測定値が異なることが懸念される場合や切り替えで受信回路に接続さ れない空中線端子からの発射が懸念される場合は，全ての空中線端子の測定を行う。
（6）5（3），（4）はそれぞれの空中線端子において周波数ごとに測定した値が，許容値を空中線本数で除した値の $1 / 10$ を超えるすべての値を表示し加算するものである。
（例 空中線本数が 4 本で 1 GHz 以上 10 GHz 未満の範囲の場合は，それぞれの空中線において測定した周波数ごとの測定値が $0.5 \mathrm{nW} ~((20 \mathrm{nW} / 4) / 10)$ を超える値のとき，すべての測定値を加算 して合計値を表示する。）

九 混信防止機能

1 測定系統図
（1）識別符号を送信する場合
（2）識別符号を受信する場合

2 測定器の条件等

（1）復調器は，受験機器が送出する送信信号を復調し，識別符号の内容が表示可能であること。
（2）対向器は，受験機器が送出する送信信号と同様な識別符号の送信が可能であること。

3 受験機器の状態

通常の使用状態としておく。

4 測定操作手順

（1）受験機器が自動的に識別符号を送信する機能を有する場合
ア 受験機器から，定められた識別符号を送信する。
イ 復調器により，送信された識別符号を確認する。
（2）受験機器が自動的に識別符号を受信する機能を有する場合
ア 対向器から，定められた識別符号を送信する。
イ 通常の通信が行われることを確認する。
ウ 対向器から，定められた識別符号と異なる符号を送信する。

工 受験機器が送信停止するか，識別符号が異なる旨の表示が出ることを確認する。
（3）上記の条件が満たされない場合は，書面により確認する。
5 結果の表示
識別装置の機能については，良，否で表示する。
6 その他の条件
（1）本試験項目は，4（1）又は4（2）のいずれか一方だけ行う。

十 送信バースト長

1 測定系統図

2 測定器の条件等

スペクトルアナライザの設定は次のとおりとする。
中心周波数 試験周波数
掃引周波数幅 0 Hz
分解能帯域幅 10 MHz
ビデオ帯域幅 分解能帯域幅と同程度
掃引時間 測定精度が保証される時間
Y 軸スケール 10dB／Div
検波モード ポジティブピーク
トリガ条件 レベル立ち上がり

3 受験機器の状態

試験周波数で，受信状態から電波を発射する状態にする。

4 測定操作手順

（1）スペクトルアナライザの設定を上記 2 の状態とし，トリガ条件を立ち上がりトリガに設定し，受験機器を電波発射状態にする。
（2）複数の空中線端子を有する場合は，それぞれの空中線端子出力を合成し（6 その他の条件参照）一の空中線が電波を発射開始してから全ての空中線が電波の発射を終了するまでを測定す る。
5 結果の表示
良，否で表示する。
6 その他の条件
（1）2において分解能帯域幅を 10 MHz としているが，送信バースト時間の測定値が許容値に対し十分余裕がある場合は，サブキャリアを確認できる範囲で分解能帯域幅を 1 MHz 程度まで狭くし て測定してもよい。なお，測定値が許容値に対して余裕がない場合は，分解能帯域幅を占有周波数帯幅の許容値以上とする。
（2）（1）において，分解能帯域幅を 10 MHz 以上（占有周波数帯幅許容値以上が望ましい。）に設定 できない場合は，広帯域検波器の出力をオシロスコープ等で測定する。
（3）2において，時間軸波形を直接表示する機能を有するスペクトルアナライザを用いる場合は，解析帯域幅を 10 MHz 以上（占有周波数帯幅許容値以上が望ましい。）として測定を行ってもよ い。
（4）複数の空中線端子を有する場合は，それぞれの空中線端子を合成器（例：コンバイナー等）に おいて接続して測定する。以下に空中線端子が 4 の場合の接続を示す。

受野機器側

十一 キャリアセンス機能
1 測定系統図
（1）受験機器のみで試験を行う場合

（2）外部試験装置を用いて試験を行う場合

2 測定器の条件等
（1）標準信号発生器の設定は次のとおりとする。

搬波周波数	受験機器の受信周波数帯の中心周波数（注 1）
変調	無変調（注 2）
出カレベル	受験機器の空中線入力部において，電界強度が $100 \mathrm{mV} / \mathrm{m}$ になる値と
	同等のレベル。

注 1：2つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数の受信周波数帯の中心周波数

注2：中心周波数における無変調キャリアでは受験機器のキャリアセンスが機能しない場合は必要 に応じて周波数をずらすか又は変調をかける。
（2）スペクトルアナライザの設定は次のとおりとする。
中心周波数 使用帯域の中心周波数

掃引周波数幅 占有周波数帯幅の許容值程度
分解能帯域幅
1 MHz 程度
ビデオ帯域幅
分解能帯域幅と同程度
Y 軸スケール
$10 \mathrm{~dB} / \mathrm{div}$
トリガ条件
フリーラン
検波モード
ポジティブピーク
（3）外部試験装置は，受験機器と回線接続が可能な装置である。
これの代用として，受験機器と通信可能な対向機を使用することができる。

3 受験機器の状態

試験周波数及び試験拡散符号に設定して，最初に受信状態にしておく。
なお，外部試験装置を用いる場合は，受験機器と外部試験装置との間で回線接続する。

4 測定操作手順

（1）受験機器のみで試験を行ら場合
ア 標準信号発生器の出力をオフの状態で，受験機器を送信動作にし，スペクトルアナライザで電波を発射することを確認する。

イ 受験機器を受信状態にする。
ウ 標準信号発生器の出力をオンの状態で，受験機器を送信動作にし，スペクトルアナライザで電波を発射しないことを碓認する。
（2）外部試験装置を用いて試験を行う場合
ア 標準信号発生器の出力をオフの状態にする。
イ 受験機器と外部試験装置との間で回線接続し，試験周波数の電波が発射されることをスペク トルアナライザで確認する。
ウ 受験機器を受信状態にする。
工 標準信号発生器の出力をオンの状態で，受験機器を送信動作にし，スペクトルアナライザで電波を発射しないことを確認する。

5 結果の表示

良，否で表示する。
6 その他の条件
（1）標準信号発生器の出力を変調波に設定してキャリアセンス機能の試験を行った場合は，受験機器に用いている変調方式のみならず，同一周波数帯で運用するほかの無線設備に用いる変調方式 の変調波についても受験機器のキャリアセンス機能が動作する必要がある。
（2）受験機器の空中線入力部に加えるキャリアセンスレベルは，以下の式による。

$$
\mathrm{P}_{\mathrm{Cs}}(\mathrm{~W})=\frac{\mathrm{G} \lambda^{2}}{480 \pi^{2}} \times \mathrm{E}^{2}
$$

Pcs：受験機器の空中線入力部に加えるキャリアセンスレベル（W）
E ：電界強度（ $100(\mathrm{mV} / \mathrm{m})$ ）
G：受信空中線絶対利得の真値（倍）
λ ：搬送波周波数の波長（m）
Pcs をdBm 単位とし，入（m）をF（MHz）に変換すると以下の式となる。
$\operatorname{Pcs}(\mathrm{dBm})=22.79+\mathrm{Gr}-201 \mathrm{ogF}$
Pcs：受験機器の空中線入力部に力口えるキャリアセンスレベル（dBm）
Gr ：受信空中線の絶対利得（ dBi ）
F：搬送波周波数（MHz）

一 一般事項

1 試験場所の条件等

（1）試験場所
床面を含む6面反射波を抑圧した電波暗室とする。
（2）試験場所の条件
空間の定在波による電界強度の変化の最大値を，$\pm 1 \mathrm{~dB}$ 以下とし，$\pm 0.5 \mathrm{~dB}$ 以下を目標とする。 なお，この評価方法は，IEC60489－1 改正第二版のA．2．3 Low reflection test sites （LRTS，reduced ground reflection）のための評価方法（測定場所の電界定在波を測定する方法）によるものとする。
（3）測定施設
測定施設は，次の図に準じるものとする。

ア 受験機器及び置換用空中線は回転台上に乗せ地上高 1.5 m （底部）以上でできる限り高くする。台の材質及び受験機器等の設置条件は，昭和 63 年 2 月 25 日郵政省告示第 127 号「発射する電波が著しく微弱な無線局の電界強度の測定方法」（電波法施行規則（昭和 25 年 11 月 80 日電波監理委員会規則第 14 号（以下「施行規則」という。））第 6 条第 2 項関係）に準ずる。 なお，受験機器及び置換用空中線の取付けは，電波伝搬に影響のないように空中線の放射角内 に回転台が入らないようにする。

イ 測定用空中線の地上高は，対向する受験機器及び置換用空中線と同一高さとする。
ウ 受験機器と測定用空中線の距離は原則として 3 m とする。
なお，この距離は受験機器の電力及び受験機器空中線や測定用空中線の日径等によって考する必要がある。
工 測定用空中線及び置換用空中線は指向性のある型で，広帯域特性を有し，かつ，受験機器の空

中線と同一偏波のものが望ましい。

2 本試験方法の適用対象

（1）本試験方法はアンテナ一体型の設備に適用する。アンテナ端子（試験用端子を合む）のある設備の試験方法は別に定める。
（2）本試験方法は内蔵又は付加装置により次の機能が実現できる機器に適用する。
ア 通信の相手方がない状態で電波を送信する機能
ィ 連続送信（受信）状態，又は一定周期かつ同一バースト長の継続的バースト状態で送信（受信） する機能
ウ 試験しようとする周波数を設定して送信する機能
工 試験用の変調設定できる機能及び変調停止できる機能を有することが望ましい
才 標準符号化試験信号（ITU－T 働告 0.150 による 9 段 PN 符号又は 15 段 PN 符号）を用いて変調 する機能
力 複数の空中線を有する無線設備の場合は，個々の空中線ごとに送信をオン，オフする機能を有 することが望ましい
キ 複数の空中線を有する無線設備であって，個々の空中線ごとに送信をオン，オフする機能を有 しない場合は最も離れた空中線の間隔が 13 cm 以下であること
（注 上記機能が実現できない機器の試験方法については別途検討する。）
3 その他
（1）適合性判定に必要な空中線の絶対利得は，提出された書面で確認する。
（2）各試験項目の結果は，測定値とともに技術基準の許容値を表示する。
（3）本試験方法は標準的な方法を定めたものであるが，これに代わる他の試験方法について技術的 に妥当であると証明された場合は，その方法で試験してもよい。

二 周波数の偏差

1 測定系統図

2 測定器の条件等

（1）周波数計としては，カウンタ又はスペクトルアナライザ（局発がシンセサイザ方式のもの）を使用する。
（2）周波数計の測定確度は，規定の許容偏差の $1 / 10$ 以下の確度とする。
（3）バースト波を測定する場合は，カウンタのパルス計測機能を使用して測定する。その場合ゲー ト開放時間をなるべくバースト区間の全体が測れる値にする。

3 受験機器の状態

（1）試験周波数及び最大出力に設定して，無変調状態（連続又は継続的バースト）で送信する。
（2）無変調にできない場合は，変調状態で送信する。
（3）複数の空中線を有する場合は，それぞれの空中線ごとに送信状態とする。

4 測定操作手順

（1）無変調状態の場合は，周波数計で直接測定する。
（2）変調状態の場合は，波形解析器で測定する。
（3）2 つの搬送波周波数を同時に使用する無線設備の場合は，搬送波周波数ごとに送信を行い，各々の搬送波周波数について測定する。
（4）複数の空中線を有する場合は，それぞれの空中線ごとに測定する。

5 結果の表示

（1）結果は，測定値を MHz 又は GHz 単位で表示するとともに，測定値の割当周波数に対する偏差 を百万分率（ 10^{-6} ）の単位で $(+)$ 又は $(-)$ の符号を付けて表示する。
（2）2 つの搬送波周波数を同時に使用する無線設備の場合は，割当周波数に対する搬送波周波数ご との測定値の偏差を表示する。
（3）複数の空中線を有する場合は，それぞれの空中線での測定値のうち，最も偏差の大きなものを表示するほか，参考としてそれぞれの空中線の測定値も表示する。
6 その他の条件
（1）変調波で試験する場合で，スペクトルアナライザによる周波数測定が行えるような特徴的な スペクトラムがなく，特徴的なディップが観測される場合，信号発生器（シンセサイザ方式と する）を用いた方法で周波数を測定してもよい
すなわち，信号発生器の信号を被試験信号と同時に（又は切り替えて）スペクトルアナライザ で観測し，信号発生器の周波数を画面上のディップの位置に合わせ，その時の信号発生器の周波数を測定値とする。
（2）複数の空中線を有する場合であつても，空中線選択方式のダイバーシティ等の切り替え回路 のみで，周波数が変動する要因がない空中線の組合せであって同一の送信出力回路に接続さ れる場合は，選択接続される空中線の測定でよい。
（3）複数の空中線を有する場合であっても，共通の基準発振器に位相同期（例：PLL 等による位相同期）しているか，共通のクロック信号等を用いており，複数の空中線の周波数の偏差が同 じになることが証明される場合は，一の代表的な空中線の測定結果を測定値としてもよい。
（4）複数の空中線を有する無線設備であって，個々の空中線ごとに送信をオン，オフする機能を有しない場合は，実運用状態で同時に送信状態となる全ての空中線の組み合わせで送信して測定する。

三 占有周波数帯幅

1 測定系統図

2 測定器の条件等

（1）スペクトルアナライザは以下のように設定する。

中心周波数 試験周波数
掃引周波数幅
分解能帯域幅
ビデオ帯域幅
Y 軸スケール

許容値の約 $2 \sim 3.5$ 倍（例 40 MHz ）許容値の約 3% 以下（例 300 kHz ）分解能帯域幅と同程度 10dB／Div

入カレベル
掃引時間

搬送波レベルがスペクトルアナライザ雑音レベルより十分高いこと測定精度が保証される最小時間

$$
\text { (バースト波の場合, } 1 \text { データ点あたり } 1 \text { バースト周期以上となる }
$$

時間とする。）
データ点数 400 点以上（例 1001 点）
掃引モード 連続掃引（波形が変動しなくなるまで）
検波モード サンプル
ただし，バースト波の場合はポジティブピーク
表示モード マックスホールド
（2）スペクトルアナライザの測定値は，外部又は内部のコンピュータで処理する。

3 受験機器の状態

（1）試験周波数及び最大出力に設定し，占有周波数帯幅が最大となる状態に設定して送信する。
（2）2 つの搬送波周波数を同時に使用する無線設備の場合は，搬送波周波数ごとに送信を行う。
（3）複数の空中線を有する場合は，それぞれの空中線ごとに送信状態とする。

4 測定操作手順

（1）スペクトルアナライザの設定を 2（1）とする。
（2）受験機器及び測定用空中線を対向させ，その偏波面，高さ，方向を調整し，スペクトルアナラ イザの入カレベルを最大にする。占有周波数帯幅の測定に必要なダイナミックレンジ（信号とノ イズレベルの差が 40 dB 以上あるのが望ましい）が得られる入カレベルに達しない場合は，空中線間の距離を短くするなどの工夫を行う。
（3）表示に変化が認められなくなるまで掃引を繰返した後，全データ点の値をコンピュータの配列変数に取り込む。
（4）全データについて， dB 値を電力次元の真数に変換する。
（5）全データの総和を求め，「全電力」として記憶する。
（6）最低周波数のデータから順次上に電力の加算を行い，この値が「全電力」の 0.5% になる限界 データ点を求める。その限界データ点の周波数を下限周波数として記憶する。
（7）最高周波数のデータから順次下に電力の加算を行い，この値が「全電力」の 0.5% になる限界 データ点を求める。その限界データ点の周波数を上限周波数として記憶する。
（8）占有周波数帯幅（＝上限周波数－下限周波数）を計算する。
（9）2 つの搬送波周波数を同時に使用する無線設備の場合は，搬送波周波数ごとに送信を行い，各々の搬送波周波数について占有周波数帯幅を測定する。
（10）複数の空中線を有する場合は，それぞれの空中線ごとに測定する。

5 結果の表示

（1）占有周波数帯幅を，MHz の単位で表示する。
（2）2 つの搬送波周波数を同時に使用する無線設備の場合は，搬送波周波数ごとの測定値を表示す る。
（3）複数の空中線を有する場合は，それぞれの空中線ごとの測定値のうち，最も大きなものを表示 するほか，参考としてそれぞれの空中線ごとの測定値も表示する。

6 その他の条件

（1）複数の空中線を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波を発

射しない場合は，同時に電波を発射する空中線のみの測定でよい。 ただし，空中線の選択回路に非線形素子を有する場合は省略しない。
（2）複数の空中線を有する場合であって，個々の空中線ごとに送信をオン，オフする機能を有しな い場合は，実運用状態で同時に送信状態となる全ての空中線の組み合わせで送信して測定する。
（3）複数の空中線を有する場合であって，空中線ごとの測定値が許容値から 100 kHz を減じた値 （例：許容値が 20 MHz の場合，測定値が 19.9 MHz ）を超える場合は，全ての空中線から送信し空中線電力の総和が最大となる状態で測定し，それぞれの空中線ごとの測定値に加えて表示する こと。

四 スプリアス発射又は不要発射の強度
1 測定系統図

曽換用空中線

注1コンピュータは，振幅の平均値を求める場合に使用する。

2 測定器の条件等

（1）不要発射探索時のスペクトルアナライザの設定は次のようにする。
掃引周波数幅
（注2）
分解能帯域幅
ビデオ帯域幅
1 MHz

Y 軸スケール
分解能帯域幅と同程度

入カレベル
掃引時間
10dB／Div
最大のダイナミックレンジとなる値

データ点数 400 点以上（例 1001 点）
掃引モード
単掃引
検波モード
ポジティブピーク
注 2 ：不要発射の探索は， 30 MHz から 26 GHz までとする。ただし，以下の周波数を除く。

	測定除外周波数
	5.2 GHz 帯
20 MHz システム	$5,142 \mathrm{MHz} \sim 5,266.7 \mathrm{MHz}$
40 MHz システム	$5,141.6 \mathrm{MHz} \sim 5,278.4 \mathrm{MHz}$
80 MHz システム	$5,123.2 \mathrm{MHz} \sim 5,296,7 \mathrm{MHz}$

注 3 ：バースト波の場合，1 データ点あたり 1 バースト周期以上となる時間とする。
掃引時間短縮のため「（掃引周波数幅／分解能帯域幅）×バースト周期」で求まる時間以上であれば掃引時間として設定してもよい。ただし，検出された信号レベルが最大 3 dB 小さく観測される可能性があるので注意を要する。
（2）不要発射振幅測定時のスペクトルアナライザの設定は次のようにする。

中心周波数
掃引周波数幅
分解能帯域幅
ビデオ帯域幅
Y 軸スケール
入カレベル
掃引時間

データ点数
掃引モード
検波モード

搬送波周波数及び不要発射周波数（探索された周波数）
0 Hz
1 MHz
分解能帯域幅と同程度
10dB／Div
最大のダイナミックレンジとなる値
測定精度が保証される最小時間
ただし，バースト波の場合，1 バーストの継続時間以上
400 点以上（例 1001 点）
単掃引
サンプル

3 受験機器の状態

（1）試験周波数及び最大出力に設定し，連続送信状態又は継続的（一定周期，一定バースト長）バ ースト送信状態とする。
（2）受験機器をスプリアス発射又は不要発射の強度が最大となる状態に設定して送信する。
（3）拡散符号を用いるものは，試験拡散符号に設定し，標準符号化試験信号で変調する。
（4）2 つの搬送波周波数を同時に使用する無線設備の場合は，同時に 2 つの搬送波周波数の送信を行う。
（5）送信の偏波面は，受験機器の使用状態と同様にする。
（6）複数の空中線を有する場合であって，空中線電力を制御する機能を有する場合は，それぞれの空中線ごとに送信状態として電力制御を最大出力となるように設定する。

4 測定操作手順

（1）不要発射の探索
ア 受験機器及び測定用空中線の高さと方向をおおよそ対向させる。
イ スペクトルアナライザの設定を2（1）として不要発射を探索し，レベル測定が必要なスペク トルの見当をつける。又，スペクトルアナライザによる周波数の測定精度を高めるため，周波数掃引幅を $100 \mathrm{MHz}, 10 \mathrm{MHz}, ~ 1 \mathrm{MHz}$ と順次狭くして，不要発射周波数を求める。
（2）不要発射のレベル測定
（1）で探索した不要発射の周波数について（複数ある場合はその各々について），次に示すア からウの操作により最大指示値を記録した後，それぞれの不要発射の周波数に相当する周波数 について，工からクの置換測定により不要発射のレベルを測定する。また，一度に多くの受験機器を測定する場合，測定の効率化を図るため，標準信号発生器から一定の値を出力し工から力 の操作を測定精度を損なわない範囲の周波数間隔で繰返し，クに示した式の Gs と L F ，いわゆ る換算値を予め取得した後，受験機器ごとにアからウの操作を行い測定してもよい。

ア スペクトルアナライザの設定を2（2）とする。
イ 受験機器を回転させて不要発射の受信電力最大方向に調整する。
ウ 測定用空中線の地上高を受験機器の空中線と同じ高さとし，また，測定用空中線の向きを調整 して，不要発射の受信電力の最大となる位置を探し，この点のスペクトルアナライザの読みを「E」 とする。

なお，不要発射がバースト波の場合は，バースト内の平均値を「E」とする。
工 受験機器を台上から外し，置換用空中線の開日面を受験機器の開口面と同一位置に設定して，置換用の標準信号発生器から同一周波数の電波を出し，受信する。

オ 置換用空中線を回転し，電力最大方向に調整する。
力 測定用空中線の地上高を置換用空中線空中線と同じ高さとし，また，測定用空中線の向きを調整して，受信電力の最大となる位置にする。
キ 標準信号発生器の出力を調整して「E」と等しい値となる電力Ps を記録するか，あるいは「E」 に近い値（ $\pm 1 \mathrm{~dB}$ 以内）として，「E」との差から逆算して Ps を記録する。
ク スプリアス発射又は不要発射の等価等方輻射電力（ dBm ）を，下の式により求める。
不要発射の等価等方輻射電力 $=P_{S}+G s-L_{F}$
記号 Ps：標準信号発生器の出力（単位 dBm ）
Gs：置換用空中線の絶対利得（単位 dBi）
L_{F} ：標準信号発生器と置換用空中線間の給電線の損失（単位 dB ）
なお，ここでそれぞれの値は不要発射の周波数におけるものである。
（3）複数の空中線を有する場合は，それぞれの空中線ごとに測定する。

5 結果の表示

（1）上で求めた不要発射電力を許容値の周波数区分ごとに最大の 1 波を $\mu \mathrm{W} / \mathrm{MHz}$ 単位で周波数と ともに表示する。
（2）複数の空中線を有する場合は，それぞれの空中線ごとの測定値において周波数ごとにおける総和を $\mu \mathrm{W} / \mathrm{MHz}$ 単位で周波数とともに表示するほか，参考としてそれぞれの空中線ごとに最大の 1波を $\mu \mathrm{W} / \mathrm{MHz}$ 単位で周波数とともに表示する。
6 その他の条件
（1）2（1）の掃引周波数幅は，測定アンテナの帯域に合わせて適宜分割する必要がある。
（2）2（2）において，スペクトルアナライザの検波モードは「サンプル」の代わりに「RMS」を用いてもよい。
（3）受験機器の機種によっては，空中線の指向特性により不要発射のレベルが大きく変化すること に注意が必要である。
（4）受験機器の回路構成から判断して不要発射が発生しないことが明らかな特定の周波数帯があ る場合は，必要に応じその周波数帯の測定を省略しても差支えない。
（5）不要発射は給電線に供給される周波数ごとの平均電力と定義されているので，不要発射の探索 は 30 MHz から 26 GHz までと幅広く行うことにしているが，実際の測定では受験機器の構成等に よる周波数特性により，不要発射が技術基準を十分に満足することが明らかな特定の周波数帯 がある場合は，必要に応じその周波数帯の測定を省略しても差支えない。
（6）受験機器空中線が円偏波の場合，直線偏波の空中線で測定をした時は，V 及び H 成分の電力和 とする。
（7）5（2）において，周波数ごとにおける総和を表示することとしているが，それぞれの空中線

ごとの測定値が，許容値を空中線本数（注 4）で除した値を超える周波数において 1 MHz 帯域内 の値の総和を求める。なお，全ての空中線において許容値を空中線本数で除した値を下回る場合 は，それぞれの測定帯域において最大の測定値となる空中線の測定値に空中線本数を乗じた値 を表示してもよい。

注 4：空中線本数は，同時に電波を発射する空中線の本数（ストリーム数等）であって，空中線選択方式のダイバーシティ等で切り替える空中線の本数を含まない。
（8）複数の空中線を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波を発射しない場合は，同時に電波を発射する空中線のみの測定でよい。 ただし，空中線の選択回路に非線形素子を有する場合又は，空中線によって測定値が異なること が懸念される場合は，全ての空中線の測定を行う。
（9）複数の空中線を有する無線設備であって，個々の空中線ごとに送信をオン，オフする機能を有 しない場合は，実運用状態で同時に送信状態となる全ての空中線の組み合わせで送信して測定す る。この場合の置換用空中線の設置位置は受験機器空中線の中心位置とする。

五 スプリアス発射又は不要発射の強度（帯域外漏えい電力）

1 測定系統図

2 測定器の条件等

（1）帯域外漏えい電力探査時のスペクトルアナライザの設定は次のようにする。

掃引周波数幅分解能帯域幅 ビデオ帯域幅 Y 軸スケール掃引時間

データ点数
掃引モード
検波モード
（注1）に示す周波数幅
1 MHz
分解能帯域幅と同程度
$10 \mathrm{~dB} / \mathrm{Div}$
測定精度が保証される最小時間
（バースト波の場合，1 データ点あたり 1 バースト周期以上となる
時間とする。）
400 点以上（例 1001 点）
単掃引
ポジティブピーク

注 1：掃引周波数範囲は，無線設備ごとに以下の通りとする。
（ア） 20 MHz システム
$5,142 \mathrm{MHz} \sim 5,150 \mathrm{MHz}$ ，
$5,250 \mathrm{MHz} \sim 5,250.2 \mathrm{MHz}$ ，
$5,250.2 \mathrm{MHz} \sim 5,251 \mathrm{MHz}$ ，
$5,251 \mathrm{MHz} \sim 5,260 \mathrm{MHz}$ ，
$5,260 \mathrm{MHz} \sim 5,266.7 \mathrm{MHz}$
（イ）40MHz システム
$5,141.6 \mathrm{MHz} \sim 5,150 \mathrm{MHz}$ ，
$5,250 \mathrm{MHz} \sim 5,251 \mathrm{MHz}$ ，
$5,251 \mathrm{MHz} \sim 5,270 \mathrm{MHz}$ ，
$5,270 \mathrm{MHz} \sim 5,278,4 \mathrm{MHz}$
（ウ） 80 MHz システム
$5,123.2 \mathrm{MHz} \sim 5,150 \mathrm{MHz}$ ，
$5,250 \mathrm{MHz} \sim 5,251 \mathrm{MHz}$ ，
$5,251 \mathrm{MHz} \sim 5,290 \mathrm{MHz}$ ，
$5,290 \mathrm{MHz} \sim 5,296.7 \mathrm{MHz}$
（2）帯域外漏えい電力測定時のスペクトルアナライザの設定は次のようにする。中心周波数 帯域外漏えい電力の周波数（探索された周波数）
掃引周波数幅
OHz
分解能帯域幅
ビデオ帯域幅
Y 軸スケール
掃引時間

データ点数 400 点以上（例 1001 点）
掃引モード
単掃引
検波モード
サンプル

3 受験機器の状態

（1）試験周波数及び最大出力に設定し，連続送信状態又は継続的（一定周期，一定バースト長）バ
ースト送信状態とする。
（2）受験機器をスプリアス発射又は不要発射の強度（帯域外漏えい電力）が最大となる状態に設定 して送信する。
（3）複数の空中線を有する場合であって，空中線電力を制御する機能を有する場合は，それぞれの空中線ごとに送信状態として電力制御を最大出力となるように設定する。
（4）複数の空中線を有する場合は，実運用状態で同時に送信状態となる全ての空中線を送信状態に する。

4 測定操作手順

（1）帯域外漏えい電力の探索
ア受験機器及び測定用空中線の高さと方向をおおよそ対向させる。
イ スペクトルアナライザの設定を2（1）として，帯域ごとに帯域外漏えい電力を探索して，各帯域において少なくとも 1 波以上のレベル測定が必要なスペクトラムの見当をつける。又， スペクトルアナライザによる周波数の測定精度を高めるため，周波数掃引幅を $100 \mathrm{MHz}, 10 \mathrm{MHz}$ ， 1 MHz と順次狭くして，そのスペクトラムの周波数を求める。
（2）帯域外漏えい電力のレベル測定
（1）で探索した周波数の各々について，次に示すアからウの操作により最大指示値を記録した後，それぞれのスペクトラムについて，工からクの置換測定によりレベルを測定する。

また，一度に多くの受験機器を測定する場合，測定の効率化を図るため，標準信号発生器から一定の値を出力し工から力の操作を測定精度を損なわない範囲の周波数間隔で繰返し，クに示 した式のGs と LF，いわゆる換算値を予め取得した後，受験機器ごとにアからウの操作を行い測定してもよい。
ア スペクトルアナライザの設定を2（2）とする。
イ 受験機器を回転させて帯域外漏えい電力の受信電力最大方向に調整する。
ウ 測定用空中線の地上高を受験機器の空中線と同じ高さとし，また，測定用空中線の向きを調整して，受信電力の最大となる位置を探し，この点のスペクトルアナライザの読みを「E」と する。
なお，バースト波の場合は，バースト内の平均値を「E」とする。
工 受験機器を台上から外し，置換用空中線の開日面を受験機器の開口面と同一位置に設定して，置換用の標準信号発生器から同一周波数の電波を出し，受信する。
オ 置換用空中線を回転し，電力最大方向に調整する。
力 測定用空中線の地上高を置換用空中線と同じ高さとし，また，測定用空中線の向きを調整し
て，受信電力の最大となる位置を探す。
キ 標準信号発生器の出力を調整して「E」と等しい値となる電力Psを記録するか，あるいは「E」
に近い値（ $\pm 1 \mathrm{~dB}$ 以内）として，「E」との差から逆算してPs を記録する。
ク 帯域外漏えい電力の等価等方輻射電力（ $\mathrm{dBm} / \mathrm{MHz}$ ）を，下の式により求める。等価等方輻射電力 $=P s+G s-L_{F}$
記号 Ps；標準信号発生器の出力（単位 dBm ）
Gs；置換用空中線の絶対利得（単位 dBi）
L_{F} ；標準信号発生器と置換用空中線間の給電線の損失（単位 dB ） なお，ここでそれぞれの値は帯域外漏えい電力の周波数におけるものである。
（3）複数の空中線を有する場合は，それぞれの空中線ごとに測定するほか，実運用状態で同時に送信状態となる企ての空中線を送信状態にして測定する。

5 結果の表示

（1）帯域外漏えい電力については，規定の各帯域における帯域外漏えい電力の等価等方輻射電力の最大値を $\mu \mathrm{W} / \mathrm{MHz}$ 単位で周波数とともに表示する。
（2）複数の空中線を有する場合は，それぞれの空中線ごとの測定値を真数で加算して総和を表示す るほか，参考としてそれぞれの空中線ごとの測定値も表示する。
（3）帯域外漏えい電力の測定において複数の空中線を同時に送信状態として測定した値は，（1） と同様に表示する。

6 その他の条件

（1）4の搬送波周波数は，割当周波数とする。
（2）受験機器空中線が円偏波の場合，直線偏波の空中線で測定をした時は，V及び H 成分の電力和 とする。
（3）帯域外漏えい電力を搬送波の近傍で測定する場合，スペクトルアナライザの分解能帯域幅の設定が 1 MHz と広いために搬送波の電力が帯域外漏えい電力の測定値に影響を与える可能性がある。 この場合，スペクトルアナライザの分解能帯域幅を，搬送波電力が帯域外漏えい電力の測定値に影響を与えなくなる程度まで狭め，1 1 MHz ごとの電力総和を計算する等（注 2）の測定上の操作 が必要である。

注 2：電力総和の計算は以下の式による。ただし，直接 RMS 値が求められるスペクトルアナライザ の場合は，その値を用いてもよい。

$$
P_{s}=\left(\sum_{i=1}^{n} E_{i}\right) \times \frac{S_{W}}{R B W \times k \times n}
$$

Ps：各周波数での 1 MHz ごとの電力総和の測定値（W）
Ei：1データ点の測定値（W）
Sw：掃引周波数幅（ 1 MHz ）
n ：掃引周波数幅（ $1 \mathrm{MHz} \mathrm{)} \mathrm{内のデータ 点 数}$
k ：等価雑音帯域幅の補正値
RBW：分解能帯域幅（MHz）（ただし，RBW $\times \mathrm{n} \geqq$ Sw）
（4）帯域外漏えい電力の技術基準が周波数に応じて変化する帯域では，周波数ごとの測定値（等価等方輻射電力に換算した値）が技術基準を満たす必要がある。
（5）2（2）において，スペクトルアナライザの検波モードは「サンプル」の代わりに「RMS」を用いてもよい。
（6）5（2）において，空中線ごとにおける総和を表示することとしているが，それぞれの空中線 ごとの測定値が，許容値を空中線本数（注 3）で除した値を超える周波数において 1 MHz 帯域内 の値の総和を求める。なお，全ての空中線において許容値を空中線本数で除した値を下回る場合 は，それぞれの測定帯域において最大の測定値となる空中線ごとの測定値に空中線本数を乗じ た値を表示してもよい。
注3：空中線本数は，同時に電波を発射する空中線の本数（ストリーム数等）であって，空中線選択方式のダイバーシティ等で切り替える空中線の本数を含まない。
（7）複数の空中線を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波を発射しない場合は，同時に電波を発射する空中線のみの測定でよい。

ただし，空中線の選択回路に非線形素子を有する場合又は，空中線によって測定値が異なること が懸念される場合は，全ての空中線の測定を行う。
（8）複数の空中線を有する無線設備であって，個々の空中線ごとに送信をオン，オフする機能を有 しない場合は，実運用状態で同時に送信状態となる全ての空中線の組み合わせで送信して測定 する。この場合の置換用空中線の設置位置は受験機器空中線の中心位置とする。

六 空中線電力の偏差

1 測定系統図

（1） 1 MHz 当たりの電力測定の場合

（2）総電力測定の場合

注 1 増幅器は電力計の感度が不足する場合に用いる。

2 測定器の条件等

（1）スペクトルアナライザの，分解能帯域幅 1 MHz における等価雑音帯域幅を測定し，分解能帯域幅を等価帯域幅に補正する補正値を求める。ただし，拡散帯域幅が 1 MHz 以下の場合は，測定し た等価雑音帯域幅を用いて補正を行う必要はない。
（2）スペクトルアナライザの IF 出力に電力計を接続する。測定に際し，電力計に最適なレベルが加わるように，スペクトルアナライザの IF 利得（基準レベルの設定）を予め調整しておく。
（3）1MHz 当たりの空中線電力の最大値を与える周波数探索時のスペクトルアナライザの設定は，次のとおりとする。

中心周波数 試験周波数
掃引周波数幅
分解能帯域幅
占有周波数帯幅の 2 倍程度（例 40 MHz ）

ビデオ帯域幅
1 MHz
分解能帯域幅と同程度

Y 軸スケール 10dB／Div
掃引時間 測定精度が保証される最小時間
（バースト波の場合，1データ点あたり 1 バースト周期以上となる時間とする。）
トリガ条件
フリーラン
データ点数
1001 点以上
掃引モード
連続掃引
検波モード
ポジティブピーク
表示モード マックスホールド
（4）探索された周波数での 1 MHz 当たりの空中線電力を測定する時のスペクトルアナライザの設定 は，次のとおりとする。

中心周波数 最大電力を与える周波数（探索された周波数）
掃引周波数幅 0Hz
分解能帯域幅 1 MHz
掃引モード 連続掃引
（5）スペクトルアナライザの演算機能を使用して空中線電力を測定する場合のスペクトルアナラ イザの設定は，次のとおりとする。

中心周波数
掃引周波数幅
演算帯域幅
分解能帯域幅
ビデオ帯域幅
Y 軸スケール
掃引時間
トリガ条件
データ点数
掃引モード
検波モード
表示モード

探索された周波数
10 MHz 程度
1 MHz
30 kHz 以上 300 kHz 以下
分解能帯域幅の 3 倍程度
$10 \mathrm{~dB} /$ Div
1 データ点あたりバースト周期の整数倍
フリーラン
1001点
連続掃引
RMS
RMS 電力平均 10 回程度

3 受験機器の状態

（1）試験周波数に設定し，連続送信状態又は継続的（一定周期，一定バースト長）バースト送信状態とする。
（2）受験機器を空中線電力が最大となる状態に設定して送信する。
（3）拡散符号を用いるものは，試験拡散符号に設定し，標準符号化試験信号で変調する。
（4）直交周波数分割多重方式の場合は，バースト送信状態とし，副搬送波の数が最も少ない状態 （ショートプリアンブル）の時間の割合が最大となるような変調をかける。ただし，これは，実運用状態で連続的に生じうる範囲で行うこととする。もし，このような変調がかけられない場合 は，一定周期，一定バースト長のバースト送信状態，又は連続送信状態で行つてもよい。
（5）2 つの搬送波周波数を同時に使用する無線設備の場合は，同時に 2 つの搬送波周波数の送信を行う。
（6）複数の空中線を有する場合であって，空中線電力を制御する機能を有する場合は，それぞれの

空中線ごとに送信状態として電力制御を最大出力となるように設定する。

4 測定操作手順

I 電力計を用いた空中線電力の測定

1 MHz 当たりの空中線電力を，以下の手順で測定する。
ア 測定系統図（1）にしたがい，受験機器及び測定用空中線の高さと方向をおおよそ対向させる。
イ スペクトルアナライザの設定を2（3）として受信する。
ウ 受験機器を回転させて受信電力最大方向に調整する。
工 掃引を繰り返し電力が最大になる周波数をマーカで測定する。この場合，スペクトルアナライ ザの周波数の測定精度を高めるため，周波数掃引幅を $10 \mathrm{MHz}, ~ 1 \mathrm{MHz}$ ，と順次狭くして電力が最大 となる周波数を求める。この周波数を中心周波数としてスペクトルアナライザの設定を2（4） とする。
オ 2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数について，工 と同様に 1 MHz 当たりの電力が最大となる周波数を求める。
力 測定用空中線の地上高を受験機器の空中線と同じ高さとし，また，測定用空中線の向きを調整 して，電力が最大となる位置を探し，この点でのスペクトルアナライザの IF 出力に接続された電力計の読みを「E」とする。
キ 受験機器を台上から外し，置換用空中線の開口面を受験機器の開口面と同一位置に設定して，置換用の標準信号発生器から同一周波数の電波を出し，受信する。
ク 置換用空中線を回転し，電力最大方向に調整する。スペクトルアナライザの設定を2（4）と する。

ケ 測定用空中線の地上高を置換用空中線と同じ高さとし，また，測定用空中線の向きを調整して，受信電力が最大となる位置にする。
コ 標準信号発生器の出力を調整して「E」と等しい値となる電力Psを記録するか，若しくは「E」 に近い値（ $\pm 1 \mathrm{~dB}$ 以内）として，「E」との差から逆算してPs を記録する。
サ 等価雑音帯域幅補正前の空中線電力 P 。を，下の式により求める。

$$
\text { Po }=P s+G s-G_{T}-L_{F}
$$

記号 Ps；標準信号発生器の出力（dBm）
Gs；置換用空中線の絶対利得（dBi）
G_{T} ；受験機器の空中線絶対利得（dBi）
L_{F} ；標準信号発生器と置換用空中線間の給電線の損失（dB）
なおここでそれぞれの値は空中線電力の周波数におけるものである。
シ 空中線電力は，次のとおりとする。
（ア）連続波の場合 サの結果を2（1）により補正した値
（イ）バースト波の場合

連続波の場合と同様に補正した値と送信時間率から，
バースト内の平均電力を計算した値

$$
\text { ただし 送信時間率 }=\frac{\text { バースト送信時間 }}{\text { バースト繰り返し周期 }}
$$

ス 直交周波数分割多重方式の場合で，副搬送波の変調方式が複数ある場合は，それぞれの場合の空中線電力を測定し，最も大きい値を測定値とする。
セ 2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数について，空中線電力を測定する。
ソ 複数の空中線を有する場合は，それぞれの空中線ごとに測定する。

II スペクトルアナライザの演算機能を使用した空中線電力の測定

ア 測定系統図（1）にしたがい，受験機器及び測定用空中線の高さと方向をおおよそ対向させる。
イ スペクトルアナライザの設定を2（3）として受信する。
ウ 受験機器を回転させて受信電力最大方向に調整する。
工 掃引を繰り返し電力が最大になる周波数をマーカで測定する。この場合，スペクトルアナライ ザの周波数の測定精度を高めるため，周波数掃引幅を $10 \mathrm{MHz}, ~ 1 \mathrm{MHz}$ ，と順次狭くして電力が最大 となる周波数を求める。この周波数を中心周波数としてスペクトルアナライザの設定を2（5） とする。

オ 2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数について，工 と同様に 1 MHz 当たりの電力が最大となる周波数を求める。
力 測定用空中線の地上高を受験機器の空中線と同じ高さとし，また，測定用空中線の向きを調整 して，電力が最大となる位置を探し，この点でスペクトルアナライザの演算値を「E」とする。 キ この演算結果「E」は次の通りとする。
（ア）連続波の場合 スペクトルアナライザの演算から求めた値
（イ）バースト波の場合 連続波の場合と同様に演算から求めた値と送信時間率から，バース ト内の平均電力を計算した値

ク 受験機器を台上から外し，置換用空中線の開口面を受験機器の開口面と同一位置に設定して，置換用の標準信号発生器から同一周波数の電波を出し，受信する。

ケ 置換用空中線を回転し，電力最大方向に調整する。スペクトルアナライザの設定を2（5）と する。
コ 測定用空中線の地上高を置換用空中線と同じ高さとし，また，測定用空中線の向きを調整して，受信電力が最大となる位置にする。
サ 標準信号発生器の出力を調整して「E」と等しい値となる電力 Ps を記録するか，若しくは「E」 に近い値（ $\pm 1 \mathrm{~dB}$ 以内）として，「E」との差から逆算してPs を記録する。
シ 空中線電力 P 。を，下の式により求める。

$$
\text { Po }=P s+G s-G_{T}-L_{F}
$$

記号 Ps；標準信号発生器の出力（dBm）
Gs；置換用空中線の絶対利得（dBi）
G_{T} ；受験機器の空中線絶対利得（dBi）
L_{F} ；標準信号発生器と置換用空中線間の給電線の損失（dB）

なお，等価等方輻射電力は，下の式により求める。
等価等方輻射電力 $=P s+G s-L_{F}$
なおここでそれぞれの値は空中線電力の周波数におけるものである。
ス 直交周波数分割多重方式の場合で，副搬送波の変調方式が複数ある場合は，それぞれの場合の空中線電力を測定し，最も大きい値を測定値とする。

セ 2 つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数について，空中線電力を測定する。
ソ 複数の空中線を有する場合は，それぞれの空中線において測定する。

5 結果の表示

（1）結果は，空中線電力の絶対値をW／MHz 単位に換算して表示するとともに，定格（工事設計書に記載される）空中線電力に射する偏差を\％単位で（＋）又は（－）の符号を付けて表示する。また，等価等方輻射電力を 1 MHz 当たりの空中線電力と空中線の絶対利得を用いて計算し，mW／MHz 単位で表示する。（注 2）
（2）複数の空中線を有する場合は，それぞれの空中線ごとの測定値を真数で加算して表示するほ か，参考としてそれぞれの空中線ごとの測定値も表示する。
注 $2: 2$ つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数の空中線電力測定値を表示する。

6 その他の条件

（1）受験機器の空中線が円偏波の場合，直線偏波の空中線で測定した時は，V 及び H 成分の電力和 とする。
（2）2（5）の測定において，分解能帯域幅フィルタはガウスフィルタとし，3dB 減衰帯域幅で規定されていること。なお，変調信号が安定している場合には，30kHz 以下とすることができる。
（3）4 I において，スペクトルアナライザの検波モードを「RMS」として測定する場合においては電力計に代えてもよい。
（4）（3）において，スペクトルアナライザの検波モードを「RMS」とする場合は，ビデオ帯域幅を分解能帯域幅と同程度に設定するか，又は，ビデオ帯域幅の設定を OFFとして，空中線電力の最大値を与える周波数探索を行つてもよい。
（5）スペクトルアナライザの検波モードが，電力の真値（RMS）を表示するものであれば，スペク ト

ルアナライザ表示値（バースト波の場合はバースト内平均電力に換算すること。）を測定値として もよい。ただし，分解能帯域幅 1 MHz における等価雑音帯域幅の補正が可能であること。なお，測定値に疑義がある場合は2（4）の方法を用いて確認を行うこと。
（6）4 I（1）において，電力計を用いて空中線電力（総電力）を測定し，その値を使用してスペ クトルアナライザのトレースを正規化して 1 MHz 当たりの電力を算出してもよい。
（7）複数の空中線を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波を発射しない場合は，同時に電波を発射する空中線のみの測定でよい。ただし，空中線によって測定値 が異なることが懸念される場合は省略してはならない。
（8）複数の空中線を有する無線設備であって，個々の空中線ごとに送信をオン，オフする機能を有 しない場合は，全ての空中線から送信する状態として測定する。この場合の置換用空中線の設置位置は受験機器空中線の中心位置とする。
（9）IIの測定において，掃引時間は，バースト周期×データ点数の整数倍に設定する。これができ

ない場合には，バースト周期 $\times 10 \times$ データ点数以上の時間とする。
（10）II の測定において，演算帯域幅は，矩形とすること。チャネルパワー機能を有するスペクト ルアナライザにおいて，初期設定がルートナイキストフィルタ等に設定されている機種があるた め注意を要する。
（11）IIの測定において，演算は分解能帯域幅を等価雑音帯域幅で補正を行っているものであるこ と。
（12）IIの測定において，スペクトルアナライザの演算機能を用いて電力密度を求める場合は，測定する分解能帯域幅，ビデオ帯域幅などの設定条件を同じ条件として，標準信号発生器を仲介して電力計の測定値との差を補正すること。
（13）II の測定では，測定器により測定結果にばらつきが生じる可能性があるため，測定に用いる場合には十分な検証をおこなうこと。測定結果に堤義が生じた場合には，I の測定方法を用いるこ と。

七 隣接チャネル漏えい電力

1 測定系統図

2 測定器の条件等

隣接チャネル漏えい電力測定時のスペクトルアナライザの設定は次のようにする。

中心周波数
掃引周波数幅
分解能帯域幅
ビデオ帯域幅
Y 軸スケール
入カレベル
データ点数
掃引モード
検波モード

振幅平均処理回数

測定操作手順に示す周波数
（注 1）に示す周波数幅
300 kHz
300 kHz
$10 \mathrm{~dB} / \mathrm{Div}$
搬送波レベルがスペクトルアナライザ雑音より十分高いこと
400 点以上（例 1001 点）
連続掃引
サンプル
ただし，バースト波の場合はポジティブピーク
スペクトラムの変動が無くなる程度の回数（例 10 回程度）

注 1
占有周波数帯幅 18 MHz 超え 20 MHz 以下： 20 MHz
占有周波数帯幅 20 MHz 超え 40 MHz 以下： 40 MHz
占有周波数帯幅 40 MHz 超え 80 MHz 以下： 80 MHz

3 受験機器の状態

（1）試験周波数及び最大出力に設定し，連続送信状態又は継続的（一定周期，一定バースト長）バ ースト送信状態とする。
（2）受験機器を隣接チャネル漏えい電力が最大となる状態に設定して送信する。
（3）複数の空中線を有する場合であって，空中線電力を制御する機能を有する場合は，それぞれの空中線ごとに送信状態として電力制御を最大出力となるように設定する。
（4）複数の空中線を有する場合は，実運用状態で同時に送信状態となる全ての空中線を送信状態に する。

4 測定操作手順

（1）スペクトルアナライザの設定を 2 とする。
（2）受験機器及び測定用空中線を対向させ，その偏波面，高さ，方向を調整し，スペクトルアナラ イザの入カレベルを最大にする。隣接チャネル漏えい電力の測定に必要なダイナミックレンジが得られる入カレベルに達しない場合は，空中線間の距離を短くするなどの工夫を行う。
（3）搬送波電力（Pc）の測定
ア搬送波周波数を中心周波数にして掃引する。
イ 全データ点の値をコンピュータの配列変数に取り込む。
ウ 全データについて，dB 値を電力次元の真数に変換する。
工 全データの電力総和を求め，これをPc とする。
（4）上側隣接チャネル漏えい電力（Pu）の測定
ア 搬送波周波数 +20 MHz 又は +40 MHz （注 2）を中心周波数にして掃引する。
イ 全データ点の値をコンピュータの配列変数に取り込む。
ウ 全データについて，dB 値を電力次元の真数に変換する。
工 全データの電力総和を求め，これを Pu とする。
オ 搬送波周波数 +40 MHz 又は +80 MHz （注 2）を中心周波数にして掃引し，終了後，イから工の手順 を
繰り返す。
（5）下側隣接チャネル漏えい電力（ P_{L} ）の測定
ア 搬送波周波数 -20 MHz 又は -40 MHz （注 2）を中心周波数にして掃引する。
イ 全データ点の値をコンピュータの配列変数に取り込む。
ウ 全データについて， dB 値を電力次元の真数に変換する。
工 全データの電力総和を求め，これを P_{L} とする。
オ 搬送波周波数－40MHz 又は－80MHz（注 2）を中心周波数にして掃引し，終了後，イから工の手順 を繰り返す。
注 2
占有周波数帯幅 18 MHz 超え 20 MHz 以下： $\pm 20 \mathrm{MHz}, ~ \pm 40 \mathrm{MHz}$
占有周波数帯幅 20 MHz 超え 40 MHz 以下： $\pm 40 \mathrm{MHz}, ~ \pm 80 \mathrm{MHz}$
占有周波数帯幅 40 MHz 超え 80 MHz 以下：$\pm 80 \mathrm{MHz}$
（6）複数の空中線を有する場合は，それぞれの空中線ごとに測定する。
（7）隣接チャネル漏えい電力は，下記式により計算する。
ア上側隣接チャネル漏えい電力比 $101 \mathrm{og}(\mathrm{Pu} / \mathrm{Pc})$
イ 下側隣俵チャネル漏えい電力比 $101 \mathrm{og}\left(\mathrm{P}_{\mathrm{L}} / \mathrm{Pc}\right)$
（8）複数の空中線を有する場合は，実運用状態で同時に送信状態となる全ての空中線の組み合わせ で送信して測定する。

5 結果の表示

上側隣接チャネル漏えい電力及び下側隣接チャネル漏えい電力の測定値を，技術基準で規定する単位で表示する。

なお，4（8）で求めたときは，参考としてそれぞれの空中線端子ごとの測定値も表示する。
6 その他の条件
（1）2 のスペクトルアナライザの設定において，掃引周波数幅を 100 MHz 又は 200 MHz にし，一つ の画面で，上側，下側ともに $\pm 20 \mathrm{MHz}, ~ \pm 40 \mathrm{MHz}$ 又は $\pm 40 \mathrm{MHz}, ~ \pm 80 \mathrm{MHz}$ の隣接チャネル漏えい電力 を測定するような方法を用いてもよい。
（2）4の搬送波周波数は，割当周波数とする。
（3）受験機器空中線が円偏波の場合，直線偏波の空中線で測定をした時は，V及びH成分の電力和 とする。
（4）複数の空中線を有する場合であっても，空中線選択方式のダイバーシティ等で同時に電波を発射しない場合は，同時に電波を発射する空中線のみの測定でよい。
ただし，空中線の選択回路に非線形素子を有する場合又は，空中線によって測定値が異なることが懸念される場合は，全ての空中線の測定を行う。
（5）複数の空中線を有する無線設備であって，個々の空中線ごとに送信をオン，オフする機能を有 しない場合は，実運用状態で同時に送信状態となる全ての空中線の組み合わせで送信して測定す る。この場合の置換用空中線の設置位置は受験機器空中線の中心位置とする。

八 副次的に発する電波等の限度

1 測定系統図

2 測定器の条件等

（1）副次発射探索時のスペクトルアナライザは以下のように設定する。

掃引周波数幅
分解能帯域幅
（注 1）
周波数が 1 GHz 末満のとき， 100 kHz 1 GHz 以上のとき， 1 MHz
ビデオ帯域幅
掃引時間

分解能帯域幅と同程度
測定精度が保証される最小時間

Y 軸スケール 10dB／Div
データ点数 400 点以上（例 1001 点）
掃引モード
単掃引
検波モード
ポジティブピーク
注 1 ：副次発射の探索は， 30 MHz から 26 GHz までとする。ただし，掃引幅は受験機器の空中線の周波数特性を考慮して決めても差支えない。
（2）副次発射測定時のスペクトルアナライザは以下のように設定する。

中心周波数
掃引周波数幅
分解能帯域幅

ビデオ帯域幅
掃引時間
Y 軸スケール
データ点数
掃引モード
検波モード

測定する副次発射周波数（探索された周波数）
0 Hz
中心周波数が 1 GHz 未満のとき， 100 kHz
1 GHz 以上のとき， 1 MHz
分解能帯域幅と同程度
測定精度が保証される最小時間
10dB／Div
400 点以上（例 1001 点）
連続掃引
サンプル

3 受験機器の状態

（1）試験周波数を全時間にわたり，連続受信状態とする。
（2）測定用空中線の偏波面は，受験機器の使用状態と同様にする。
（3）複数の空中線を有する場合は，他の空中線の送信を停止又はオフとして，それぞれの空中線ご とに受信状態とする。空中線ごとに受信状態に設定できない場合は，全ての空中線を受信状態にす る。

4 測定操作手順

（1）副次発射の探索
ア 受験機器及び測定用空中線の高さと方向をおおよそ対向させる。
イ スペクトルアナライザの設定を2（1）として，副次発射を探索してレベル測定が必要なスペ クトルの見当をつける。
（2）副次発射のレベル測定
（1）で探索した副次発射の周波数について（複数ある場合はその各々について），次に示すアか らウの操作により最大指示値を記録した後，それぞれの副次発射の周波数に相当する周波数つ いて，工からクの置換測定により副次発射のレベルを測定する。

また，一度に多くの受験機器を測定する場合，測定の効率化を図るため，標準信号発生器から一定の値を出力し工から力の操作を測定精度を損なわない範囲の周波数間隔で繰返し，クに示し た式の Gs と LF，いわゆる換算値を予め取得した後，受験機器ごとにアからウの操作を行い測定 してもよい。

ア スペクトルアナライザの設定を2（2）とする。
イ 受験機器を回転させて副次発射の受信電力最大方向に調整する。
ウ 測定用空中線の地上高を受験機器の空中線と同じ高さとし，また，測定用空中線の向きを調整 して，副次発射の受信電力の最大となる位置を探し，この点のスペクトルアナライザの読みを「E」とする。

工 受験機器を台上から外し，置換用空中線の開口面を受験機器の開口面と同一位置に設定して，置換用の標準信号発生器から同一周波数の電波を出し，受信する。
才 置換用空中線を回転し，電力最大方向に調整する。
力 測定用空中線の地上高を置換用空中線と同じ高さとし，また，測定用空中線の向きを調整して，受信電力の最大となる位置を探す。

キ 標準信号発生器の出力を調整して「E」と等しい値となる電力Ps を記録するか，あるいは「E」 に近い値（ $\pm 1 \mathrm{~dB}$ 以内）として，「E」との差から逆算してPs を記録する。
$ク$ 副次発射の電力（ dBm ）を，下の式により求める。副次発射の電力 $=P s+G s-G_{T}-L_{F}$

記号 Ps；標準信号発生器の出力（単位 dBm ）
Gs；置換用空中線の絶対利得（単位 dBi）
G_{T} ；受験機器の空中線絶対利得（単位 dBi）
L_{F} ；標準信号発生器と置換用空中線間の給電線の損失（単位 dB ）
なお，ここでそれぞれの値は副次発射の周波数におけるものである。
（3）複数の空中線を有する場合であって，他の空中線の送信を停止又はオフとして，それぞれの空中線ごとに受信状態とすることができる場合は空中線ごとに測定する。空中線ごとに受信状態に設定できない場合は，全ての空中線を受信状態にして測定する。

5 結果の表示

（1）上で求めた副次発射の電力を nW 又は pW 単位に換算する。
（2）許容値の $1 / 10$ 以下の場合は最大の 1 波を周波数とともに nW 又は pW 単位で表示する。
（3）許容値の $1 / 10$ を超える場合はすべての測定値を周波数とともに nW 単位で表示し，かつ電力 の合計値をnW 単位で表示する。
（4）複数の空中線を有する場合であって，他の空中線の送信を停止又はオフとして，それぞれの空中線ごとに受信状態とすることができる場合は，それぞれの空中線ごとの測定値の総和を求め表示する。許容値を空中線本数（注 2）で除した値の $1 / 10$ 以下の場合は最大の 1 波を周波数ととも に nW 又は pW 単位で表示するほか，参考としてそれぞれの空中線ごとに最大の 1 波を周波数とと もに nW 又は pW 単位で表示する。
（5）測定値の総和が許容値を空中線本数（注 2）で除した値の $1 / 10$ を超える場合はすべての測定値

を周波数とともに nW 単位で表示し，かつ電力の合計値を nW 単位で表示するほか，参考としてそ れぞれの空中線ごとに最大の 1 波を周波数とともに nW 単位で表示する。
注2：空中線本数は，同時に電波を受信する空中線の本数（ストリーム数等）であって，空中線選択方式のダイバーシティ等で切り替える空中線の本数を含まない。
（6）複数の空中線を有する場合であって，それぞれの空中線ごとに受信状態とすることができない場合は，（2），（3）と同様に表示する。
6 その他の条件
（1）受験機器の機種によっては，空中線の指向特性により副次発射のレベルが大きく変化すること により，測定すべき副次発射の周波数が変わることに注意が必要である。
（2）副次発射は受信空中線と電気的常数の等しい擬似空中線回路で消費される平均電力と定義さ

れているので，副次発射の探索に当たつての掃引周波数幅は，受験機器の空中線の周波数特性を考慮して必要に応じその周波数幅を限定しても差支えない。
（3）受験機器空中線が円偏波の場合，直線偏波の空中線で測定した時は，V 及びH成分の電力和と する。
（4）2（1）の掃引周波数幅は，測定アンテナの帯域に合わせて適宜分割する必要がある。
（5）2（2）において，スペクトルアナライザの検波モードは「サンプル」の代わりに「RMS」を用いてもよい。
（6）受験機器の設定を連続受信状態にできないものについては，受験機器の間欠受信周期を最短に設定して，測定精度が保証されるようにスペクトルアナライザの掃引時間を，少なくとも 1 デー夕点当たり 1 周期以上とする必要がある。
（7）スペクトルアナライザのノイズレベルが測定値に影響を与える場合は，スペクトルアナライザ の入カレベルを上げるために，空中線間の距離を短くするなどの工夫を行う必要がある。
（8）複数の空中線を有する場合であっても，空中線選択方式のダイバーシティ等で同時に受信回路 に接続されない場合は，同時に受信回路に接続される空中線のみの測定でよい。ただし，空中線に よって測定値が異なることが懸念される場合や切り替えで受信回路に接続されない空中線からの発射が懸念される場合は，全ての空中線の測定を行う。。
（9）5（4），（5）はそれぞれの空中線ごとの測定において周波数ごとに測定した値が，許容値を空中線本数で除した値の $1 / 10$ を超えるすべての値を表示し加算するものである。
（例 空中線本数が 4 本で 1 GHz 以上 10 GHz 未満の範囲の場合は，それぞれの空中線において測定 した周波数ごとの測定値が $0.5 \mathrm{nW} ~((20 \mathrm{nW} / 4) ~ / 10)$ を超える値のとき，すべての測定値を加算して合計値を表示する。）

九 混信防止器機能

1 測定系統図

（1）識別符号を送信する場合
（2）識別符号を受信する場合

2 測定器の条件等

（1）復調器は，受験機器が送出する送信信号を復調し，識別符号の内容が表示可能であること。
（2）対向器は，受験機器が送出する送信信号と同様な識別符号の送信が可能であること。

3 受験機器の状態

通常の使用状態としておく。

4 測定操作手順

（1）受験機器が自動的に識別符号を送信する機能を有する場合
ア 受験機器から，定められた識別符号を送信する。
イ 復調器により，送信された識別符号を確認する。
（2）受験機器が自動的に識別符号を受信する機能を有する場合
ア 対向器から，定められた識別符号を送信する。
イ 通常の通信が行われることを確認する。
ウ 対向器から，定められた識別符号と異なる符号を送信する。
工 受験機器が送信停止するか，識別符号が異なる旨の表示が出ることを確認する。
（3）上記の条件が満たされない場合は，書面により確認する。
5 結果の表示
識別装置の機能については，良，否で表示する。
6 その他の条件
本試験項目は，4（1）又は4（2）のいずれか一方だけ行う。

十 送信バースト長

1 測定系統図

2 測定器の条件等

スペクトルアナライザの設定は久のとおりとする。

中心周波数
掃引周波数幅
分解能帯域幅
ビデオ帯域幅
掃引時間
Y 軸スケール
検波モード
トリガ条件

試験周波数
0 Hz
10 MHz
分解能帯域幅と同程度
測定精度が保証される時間
$10 \mathrm{~dB} / \mathrm{Div}$
ポジティブピーク
レベル立ち上がり

3 受験機器の状態

試験周波数で，受信状態から電波を発射する状態にする。

4 測定操作手順

（1）スペクトルアナライザの設定を上記2の状態とし，トリガ条件を立ち上がりトリガに設定し，受験機器を電波発射状態にする。
（2）複数の空中線を有する場合は，全ての空中線から電波を発射し，一の空中線が電波を発射開始 してから全ての空中線が電波の発射を終了するまでを測定する。
5 結果の表示

良，否で表示する。

6 その他の条件

（1）2において分解能帯域幅を 10 MHz としているが，送信バースト時間の測定値が許容値に対し十分余裕がある場合は，サブキャリアを確認できる範囲で分解能帯域幅を 1 MHz 程度まで狭くして測定してもよい。なお，測定値が許容值に対して余裕がない場合は，分解能帯域幅を占有周波数帯幅の許容値以上とする。
（2）（1）において，分解能帯域幅を 10 MHz 以上（占有周波数帯幅許容値以上が望ましい。）に設定 できない場合は，広帯域検波器の出力をオシロスコープ等で測定する。
（3）2 において，時間軸波形を直接表示する機能を有するスペクトルアナライザを用いる場合は，解析帯域幅を 10 MHz 以上（占有周波数帯幅許容値以上が望ましい。）として測定を行ってもよい。

十一 キャリアセンス機能

1 測定系統図

（1）受験機器のみで試験を行う場合

（2）外部試験装置を用いて試験を行う場合

2 測定器の条件等

（1）標準信号発生器の設定は次のとおりとする。
搬送波周波数 受験機器の受信周波数帯の中心周波数（注 1）
変調
出カレベル

無変調（注2）
受験機器の入力部において，電界強度が $100 \mathrm{mV} / \mathrm{m}$

注 $1: 2$ つの搬送波周波数を同時に使用する無線設備の場合は，各々の搬送波周波数の受信周波数帯の中心周波数
注 2：中心周波数における無変調キャリアでは受験機器のキャリアセンスが機能しない場合はネ要

に応じて周波数をずらすか又は変調をかける。
（2）スペクトルアナライザの設定は次のとおりとする。
中心周波数 使用帯域の中心周波数
掃引周波数幅 占有周波数帯幅の許容値程度
分解能帯域幅
1 MHz 程度
ビデオ帯域幅
Y 軸スケール
分解能帯域幅と同程度

トリガ条件 $10 \mathrm{~dB} / \mathrm{div}$

検波モード
フリーラン

3）外部試験装置は，受験機器と回線接続が可能な装置である。
これの代用として，受験機器と通信可能な対向機を使用することができる。

3 受験機器の状態

試験周波数及び試験拡散符号に設定して，最初に受信状態にしておく。なお，外部試験装置を用い る場合は，受験機器と外部試験装置との間で回線接続する。

4 測定操作手順

I 受験機器のみで試験を行う場合

（1）受験機器とスペクトルアナライザを対向させる。
（2）受験機器を送信動作にし，スペクトルアナライザで電波を発射することを確認する。
（3）受験機器を受信状態にする。
（4）標準信号発生器とスペクトルアナライザを対向させる。
（5）標準信号発生器の出カレベルが，キャリアセンスの動作レベル以上であることをスペクトル アナライザで確認する。
（6）スペクトルアナライザを台上から外し，同じ位置に受験機器を設置し標準信号発生器と対向 する。また受験機器からの信号が受信できる位置にスペクトルアナライザを設置する。
（7）標準信号発生器の出力をオンの状態で，受験機器を送信動作にし，スペクトルアナライザで電波を発射しないことを確認する。

II 外部試験装置を用いて試験を行う場合

（1）標準信号発生器の出力をオフの状態にする。
（2）受験機器と外部試験装置との間で回線接続し，試験周波数の電波が発射されることをス ペクトルアナライザで確認する。
（3）受験機器を受信状態にする。
（4）標準信号発生器とスペクトルアナライザを対向させる。
（5）標準信号発生器の出カレベルが，キャリアセンスの動作レベル以上であることをスペクトル アナライザで確認する。
（6）スペクトルアナライザを台上から外し，同じ位置に受験機器を設置し標準信号発生器と対向 する。また受験機器からの信号が受信できる位置にスペクトルアナライザを設置する。
（7）標準信号発生器の出力をオンの状態で，受験機器を送信動作にし，スペクトルアナライザで電波を発射しないことを確認する。

5 結果の表示

良，否で表示する。
6 その他の条件

標準信号発生器の出力を変調波に設定してキャリアセンス機能の試験を行った場合は，受験機器 に用いている変調方式のみならず，同一周波数帯で運用するほかの無線設備に用いる変調方式の変調波についても受験機器のキャリアセンス機能が動作する必要がある。

